1
|
Lv X, Lv A, Xie T, Shao Z, Yin G, Li D, Xu L, Sun S. Enhanced Stability and Catalytic Activity of a Nanocatalyst with Reusable Ionic Liquid Hydrogels for the Reduction of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2210-2219. [PMID: 38215044 DOI: 10.1021/acs.langmuir.3c03275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Nitroaromatic compounds have a wide range of applications. However, they pose a significant threat to both the environment and human health. Ionic liquid hydrogels (ILs-gels) have emerged as a cost-effective and environmentally friendly option for various applications. However, conventional ILs-gels are known to possess mechanical flaws or defects. The procedure utilized a facile synthesis route that involved the polymerization of acrylamide (AM) and ionic liquids (ILs) to create a novel candidate for nanoparticle absorption. This study resolved this issue by creating toughened hydrophobic combined hydrogels synthesized through the addition of SiO2@poly(butyl acrylate) core-shell inorganic-organic hybrid latex particles (SiO2@PBA) to the AM-ILs mixture. The SiO2@PBA particles were chosen to provide the hydrogels with exceptional stretchability (up to 4050% strain) and high mechanical properties (tensile strength of 126 kPa) by acting as both a nanotoughener and a cross-linking point for hydrophobic linkage. Additionally, the P(AM/ILs)-SiO2@PBA hydrogel served as a template for the in situ and stable formation of palladium (Pd) nanoparticles. By incorporation of these Pd nanoparticles as catalysts into P(AM/ILs)-SiO2@PBA hydrogel carriers, the resulting P(AM/ILs)-SiO2@PBA/Pd hydrogels exhibited the ability to catalyze the degradation of p-nitrophenol. Remarkably, even after 15 applications, the efficiency of the degradation process remained consistently above 90%. Thus, the innovative SiO2@PBA toughened ILs-hydrogel design strategy can be utilized to develop robust and stretchable hydrogel materials for catalytic use in the sewage disposal industry.
Collapse
Affiliation(s)
- Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Aowei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ting Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Zhubao Shao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, National Engineering Research Center for Advanced Fire-Safety Materials D & A (Shandong), Qingdao University, Ningxia Road, 308, Qingdao 266071, China
| | - Guangzhong Yin
- Francisco de Vitoria University (UFV), Ctra. M-515, Pozuelo-Majadahonda, Km. 1800 Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Da Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Liyang Xu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
2
|
Uniyal P, Das S, Panwar S, Kukreti N, Nainwal P, Bhatia R. A Comprehensive Review on Imperative Role of Ionic Liquids in Pharmaceutical Sciences. Curr Drug Deliv 2024; 21:1197-1210. [PMID: 37815183 DOI: 10.2174/0115672018255191230921035859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023]
Abstract
Ionic liquids (ILs) are poorly-coordinated ionic salts that can exist as a liquid at room temperatures (or <100 °C). ILs are also referred to as "designer solvents" because so many of them have been created to solve particular synthetic issues. ILs are regarded as "green solvents" because they have several distinctive qualities, including better ionic conduction, recyclability, improved solvation ability, low volatility, and thermal stability. These have been at the forefront of the most innovative fields of science and technology during the past few years. ILs may be employed in new drug formulation development and drug design in the field of pharmacy for various functions such as improvement of solubility, targeted drug delivery, stabilizer, permeability enhancer, or improvement of bioavailability in the development of pharmaceutical or vaccine dosage formulations. Ionic liquids have become a key component in various areas such as synthetic and catalytic chemistry, extraction, analytics, biotechnology, etc., due to their superior abilities along with highly modifiable potential. This study concentrates on the usage of ILs in various pharmaceutical applications enlisting their numerous purposes from the delivery of drugs to pharmaceutical synthesis. To better comprehend cuttingedge technologies in IL-based drug delivery systems, highly focused mechanistic studies regarding the synthesis/preparation of ILs and their biocompatibility along with the ecotoxicological and biological effects need to be studied. The use of IL techniques can address key issues regarding pharmaceutical preparations such as lower solubility and bioavailability which plays a key role in the lack of effectiveness of significant commercially available drugs.
Collapse
Affiliation(s)
- Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Shibam Das
- Department of pharmaceutical technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Surbhi Panwar
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University, Dehradun-248002, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| |
Collapse
|
3
|
Zhao R, Xu X, Wang Z, Zheng Y, Zhou Y. The structural and hydrogen bonding properties of ionic liquid-co-solvent binary mixtures: the distinct behaviors of two anions. Phys Chem Chem Phys 2023; 25:24355-24363. [PMID: 37672223 DOI: 10.1039/d3cp02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In practical applications, ionic liquids are often mixed with co-solvents. Understanding their structures and the interactions between them is a prerequisite for expanding their range of applications. In this work, spectroscopic and theoretical methods were employed to explore the structure and hydrogen bonding behaviors of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI)/1-ethyl-3-methylimidazolium thiocyanate (EMIMSCN) and co-solvents. It can be concluded that the hydrogen bonds associated with C2-H and C4,5-H are enhanced with the addition of co-solvents in the EMIMTFSI-DMSO system, while those associated with C4,5-H are weakened in the EMIMSCN-DMSO system. Infrared and excess spectra in the v(imidazolium C-H) range of EMIMSCN-CD3CN/CD3COCD3 systems further indicate that the abnormal change of hydrogen bonds associated with C4,5-H can be attributed to [SCN]-. These differences can be explained by the change of the primary interaction site. For EMIMTFSI, the primary interaction site in ion pairs and ion clusters is always C2-H, while for EMIMSCN, the primary interaction site in ion pairs is C2-H, and in ion clusters, it becomes C4,5-H. In the EMIMTFSI-DMSO system, the co-solvent primarily interacts with C4,5-H, while in the EMIMSCN-DMSO/CH3CN/CH3COCH3 systems, it primarily interacts with C2-H. In addition, several complexes are identified through excess infrared spectra and DFT calculations.
Collapse
Affiliation(s)
- Rui Zhao
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xianzhen Xu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yanzhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, P. R. China.
| | - Yu Zhou
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Krishnan D, Schill L, Axet MR, Philippot K, Riisager A. Ruthenium Nanoparticles Stabilized with Methoxy-Functionalized Ionic Liquids: Synthesis and Structure-Performance Relations in Styrene Hydrogenation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091459. [PMID: 37177006 PMCID: PMC10180216 DOI: 10.3390/nano13091459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
A series of ruthenium nanoparticles (RuNPs) were synthesized by the organometallic approach in different functionalized imidazolium ionic liquids (FILs). Transmission electron microscopy (TEM) showed well-dispersed and narrow-sized RuNPs ranging from 1.3 to 2.2 nm, depending on the IL functionalization. Thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) allowed the interaction between the RuNPs and the ILs to be studied. The RuNPs stabilized by methoxy-based FILs (MEM and MME) displayed a good balance between catalytic activity and stability when evaluated in the hydrogenation of styrene (S) under mild reaction conditions. Moreover, the catalysts showed total selectivity towards ethylbenzene (EB) under milder reaction conditions (5 bar, 30 °C) than reported in the literature for other RuNP catalysts.
Collapse
Affiliation(s)
- Deepthy Krishnan
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, CEDEX 4, 31077 Toulouse, France
- Université de Toulouse, UPS, INPT, CEDEX 4, 31077 Toulouse, France
| | - Leonhard Schill
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - M Rosa Axet
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, CEDEX 4, 31077 Toulouse, France
- Université de Toulouse, UPS, INPT, CEDEX 4, 31077 Toulouse, France
| | - Karine Philippot
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP44099, CEDEX 4, 31077 Toulouse, France
- Université de Toulouse, UPS, INPT, CEDEX 4, 31077 Toulouse, France
| | - Anders Riisager
- Centre for Catalysis and Sustainable Chemistry, Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Optimization of synthesis conditions, characterization and magnetic properties of lanthanide metal organic frameworks from Brønsted acidic ionic liquid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Zielinski D, Szpecht A, Hinc P, Smiglak M. Synthesis and Behavior of Hexamethylenetetramine-Based Ionic Liquids as an Active Ingredient in Latent Curing Formulations with Ethylene Glycol for DGEBA. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020892. [PMID: 36677950 PMCID: PMC9863291 DOI: 10.3390/molecules28020892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
The paper presents the preparation of new ionic liquids based on hexamethylenetetramine with bis(trifluoromethanesulfonyl)imide and dicyanamide anion, which were characterized in detail in terms of their purity (Ion Chromatography) and thermal properties (Differential Scanning Calorimetry), as well as stability. The obtained substances were used to develop curing systems with ethylene glycol, which were successfully tested for their application with bisphenol A diglycidyl ether molecule. In addition, the curing process and its relationship to the structure of the ionic liquid are characterized in detail. The research showed that hexamethylenetetramine-based new ionic liquids can be successfully designed using well-known and simple synthetic methods-the Delepine reaction. Moreover, attention was paid to their stability, related limitations, and the application of hexamethylenetetramine-based ionic liquids in epoxy-curing systems.
Collapse
Affiliation(s)
- Dawid Zielinski
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
- Correspondence:
| | - Andrea Szpecht
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| | - Paulina Hinc
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | - Marcin Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznań, Poland
| |
Collapse
|
7
|
Zhao Y, Zhen Y. Looking for life activity in ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|