1
|
Carević T, Kolarević S, Kolarević MK, Nestorović N, Novović K, Nikolić B, Ivanov M. Citrus flavonoids diosmin, myricetin and neohesperidin as inhibitors of Pseudomonas aeruginosa: Evidence from antibiofilm, gene expression and in vivo analysis. Biomed Pharmacother 2024; 181:117642. [PMID: 39486364 DOI: 10.1016/j.biopha.2024.117642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Citrus flavonoids are group of bioactive polyphenols. Here, we investigated the potential of diosmin, myricetin and neohesperidin as possible inhibitors of Pseudomonas aeruginosa. This bacterium is a major clinical challenge due to its propensity to form resistant biofilm. The aims of this study were to examine flavonoids antibacterial activity using the microdilution method, assays intended to determine several antibiofilm mechanisms (crystal violet, congo red binding, extracellular DNA (eDNA) test and confocal laser scanning microscopy (CLSM) live/dead cell imaging), followed by virulence genes RT-qPCR analysis. Furthermore, we aimed to examine in vivo toxicity of the compounds as well as their efficacy in P. aeruginosa zebrafish embryo infection model. Minimal inhibitory concentrations of tested flavonoids towards P. aeruginosa were in range 0.05 - 0.4 mg/mL. A high potential of the compounds to disturb both the formation of the bacterial biofilm and its eradication was recorded, including significant reduction in biofilm biomass, exopolysaccharide and eDNA production. Biofilm treatment with diosmin resulted in the lowest percentage of live microbial cells as observed in the CLSM live/dead cell imaging. The lasI, pvdS, and rhlC genes were found to be downregulated in the presence of diosmin and myricetin. Only diosmin stood out as non-embryotoxic. Consequently, in vivo analysis using a zebrafish model of P. aeruginosa infection showed an antivirulence effect of diosmin. Our findings suggest that diosmin could be potential candidate for the development of new agent that target P. aeruginosa infections by reducing its virulence mechanisms.
Collapse
Affiliation(s)
- Tamara Carević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Stoimir Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Margareta Kračun Kolarević
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Nataša Nestorović
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Katarina Novović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 11042, Serbia
| | - Biljana Nikolić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Marija Ivanov
- Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11108, Serbia.
| |
Collapse
|
2
|
Dos Santos IIP, Silva MDCC, Ferraz CG, Ribeiro PR. Flavonoids, biphenyls and xanthones from the genus Clusia: chemistry, biological activities and chemophenetics relevance. Nat Prod Res 2024:1-14. [PMID: 38498692 DOI: 10.1080/14786419.2024.2330515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Clusia is one of the most important genera of the Clusiaceae family, comprising up to 400 species. This review describes the identification of twenty-two flavonoids from Clusia species, which includes five flavonols (1-4 and 11), six flavones (5-10), one catechin (12), one flavanone (13), and nine biflavonoids (14-22). O- and C-glycosylation are frequently observed amongst these flavonoids. Furthermore, seven biphenyls (23-29) and nine xanthones (30-38) have been isolated from Clusia species. Biphenyls and xanthones show limited occurrence within the genus, but together with biosynthetic insights, they might offer important chemophenetics leads for the consolidation of the genus Clusia within the Clusiaceae family. Altogether, this work provides an overview of the chemistry of the genus Clusia in terms of flavonoids, biphenyls and xanthones, as well as it discusses biological activities and chemophenetics of the isolated compounds, when appropriate.
Collapse
Affiliation(s)
- Ismirna I P Dos Santos
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Maria do Carmo C Silva
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| | - Caline G Ferraz
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| | - Paulo R Ribeiro
- Metabolomics Research Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
- Programa de Pós-Graduação em Química Aplicada, Departamento de Ciências Exatas e da Terra - Campus I da UNEB, Salvador, Brazil
| |
Collapse
|
3
|
Poomipark N, Chaisin T, Kaulpiboon J. Anti-proliferative, anti-migration, and anti-invasion activity of novel hesperidin glycosides in non-small cell lung cancer A549 cells. Res Pharm Sci 2023; 18:478-488. [PMID: 37842519 PMCID: PMC10568961 DOI: 10.4103/1735-5362.383704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Several attempts have been made to synthesize and investigate modified flavonoids to improve their potential anticancer efficacy. This study aimed to determine the in vitro anti-viability, anti-migration, and anti-invasive effects of two novel hesperidin glycosides, hesperidin glucoside (HG1) and hesperidin maltoside (HG2), compared to original hesperidin and diosmin. Experimental approach Inhibitory effects on normal (MRC5) and cancer (A549) cell viability of hesperidin glycosides were investigated by the trypan blue and MTS assays. A scratch assay determined the suppressive effects on cancer cell migration, and inhibition of cancer cell invasion was investigated through Matrigel™. The selectivity index (SI), a marker of cell toxicity, was also determined for A549 relative to MRC5 cells. Findings/Results The cell viability trypan blue and MTS assays showed similar results of the inhibition of A549 cancer cells; HG1 and HG2 had lower IC50 than original hesperidin and diosmin. The SI of HG1 and HG2 was > 2 after 72-h culture. Investigation of cell migration showed that HG1 and HG2 inhibited the ability of gap closure in a time- and dose-dependent manner. The infiltration of the Matrigel™-coated filter by A549 cells was suppressed in the presence of HG1 and HG2. This result implied that HG1 and HG2 could inhibit cancer cell invasion. Conclusion and implication Our results suggest the inhibition of cancer cell migration and invasion in a time- and concentration-related manner with a favorable toxic profile. Moreover, HG1 and HG2 appeared potentially better agents than the original hesperidin for future anticancer development.
Collapse
Affiliation(s)
- Natwadee Poomipark
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Titaporn Chaisin
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Jarunee Kaulpiboon
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
4
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Choi SS, Park HR, Lee KA. A Comparative Study of Rutin and Rutin Glycoside: Antioxidant Activity, Anti-Inflammatory Effect, Effect on Platelet Aggregation and Blood Coagulation. Antioxidants (Basel) 2021; 10:antiox10111696. [PMID: 34829567 PMCID: PMC8614652 DOI: 10.3390/antiox10111696] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
The effects of rutin and rutin glycoside with different solubility were compared on antioxidant activity and anti-inflammatory effects in vitro and the effects on platelet aggregation and blood coagulation in vitro and in vivo. Rutin glycoside (consisting of rutin mono-glucoside and rutin di-glucoside) was prepared via enzymatic transglycosylation from rutin. Rutin glycoside showed a higher effect than rutin on radical scavenging activity in antioxidant assays. Rutin showed a higher toxicity than rutin glycoside in murine macrophage RAW264.7 cells. They had similar effects on the levels of nitric oxide (NO), prostaglandin E (PGE) 2 and pro-inflammatory cytokines (such as tumor necrosis factor (TNF)-α, and interleukin (IL)-6) in the cells. Both rutin and rutin glycosides similarly reduced the rate of platelet aggregation compared to controls in vitro. They also similarly delayed prothrombin time (PT) and activated partial thromboplastin time (APTT) in an in vitro blood coagulation test. The effect of repeated administration of rutin and rutin glycoside was evaluated in vivo using SD rats. The platelet aggregation rate of rutin and the rutin glycoside administered group was significantly decreased compared to that of the control group. On the other hand, PT and APTT of rutin and rutin glycoside group were not significantly delayed in vivo blood coagulation test. In conclusion, rutin and rutin glycoside showed differences in antioxidant activities in vitro, while they were similar in the reduction of NO, PGE2, TNF-α and IL-6 in vitro. Rutin and rutin glycoside also showed similar platelet aggregation rates, and blood coagulation both in vitro and in vivo condition. Comparing in vitro and in vivo, rutin and rutin glycoside were effective on platelet aggregation both in vitro and in vivo, but only in vitro on blood coagulation.
Collapse
Affiliation(s)
- Sung-Sook Choi
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01370, Korea;
| | - Hye-Ryung Park
- Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Yongin 17104, Korea;
| | - Kyung-Ae Lee
- Department of Food and Nutrition, Anyang University, Anyang 14028, Korea
- Correspondence: ; Tel.: +82-31-5183-2101
| |
Collapse
|