1
|
Adamek J, Kozicka D. Synthesis of N-protected 1-aminoalkylphosphonium salts—a new perspective. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1989688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center of Silesian University of Technology, Gliwice, Poland
| | - Dominika Kozicka
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
- Biotechnology Center of Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Affiliation(s)
| | - Brian R. James
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Adamek J, Grymel M, Kuźnik A, Październiok-Holewa A. 1-Aminoalkylphosphonium Derivatives: Smart Synthetic Equivalents of N-Acyliminium-Type Cations, and Maybe Something More: A Review. Molecules 2022; 27:1562. [PMID: 35268663 PMCID: PMC8911961 DOI: 10.3390/molecules27051562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
N-acyliminium-type cations are examples of highly reactive intermediates that are willingly used in organic synthesis in intra- or intermolecular α-amidoalkylation reactions. They are usually generated in situ from their corresponding precursors in the presence of acidic catalysts (Brønsted or Lewis acids). In this context, 1-aminoalkyltriarylphosphonium derivatives deserve particular attention. The positively charged phosphonium moiety located in the immediate vicinity of the N-acyl group significantly facilitates Cα-P+ bond breaking, even without the use of catalyst. Moreover, minor structural modifications of 1-aminoalkyltriarylphosphonium derivatives make it possible to modulate their reactivity in a simple way. Therefore, these types of compounds can be considered as smart synthetic equivalents of N-acyliminium-type cations. This review intends to familiarize a wide audience with the unique properties of 1-aminoalkyltriarylphosphonium derivatives and encourage their wider use in organic synthesis. Hence, the most important methods for the preparation of 1-aminoalkyltriarylphosphonium salts, as well as the area of their potential synthetic utilization, are demonstrated. In particular, the structure-reactivity correlations for the phosphonium salts are discussed. It was shown that 1-aminoalkyltriarylphosphonium salts are not only an interesting alternative to other α-amidoalkylating agents but also can be used in such important transformations as the Wittig reaction or heterocyclizations. Finally, the prospects and limitations of their further applications in synthesis and medicinal chemistry were considered.
Collapse
Affiliation(s)
- Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (M.G.); (A.K.); (A.P.-H.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (M.G.); (A.K.); (A.P.-H.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Anna Kuźnik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (M.G.); (A.K.); (A.P.-H.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Agnieszka Październiok-Holewa
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (M.G.); (A.K.); (A.P.-H.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|