1
|
Chen J, Shan Y, Sun Y, Ding W, Xue S, Han X, Du J, Yan Z, Yu Y, He H. Hydrothermal Aging Alleviates the Phosphorus Poisoning of Cu-SSZ-39 Catalysts for NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4113-4121. [PMID: 36811527 DOI: 10.1021/acs.est.2c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As a new type of catalyst with the potential for commercial application in NOx removal from diesel engine exhausts, Cu-SSZ-39 catalysts must have excellent resistance to complex and harsh conditions. In this paper, the effects of phosphorus on Cu-SSZ-39 catalysts before and after hydrothermal aging treatment were investigated. Compared with fresh Cu-SSZ-39 catalysts, phosphorus poisoning significantly decreased the low-temperature NH3-SCR catalytic activity. However, such activity loss was alleviated by further hydrothermal aging treatment. To reveal the reason for this interesting result, a variety of characterization techniques including NMR, H2-TPR, X-ray photoelectron spectroscopy, NH3-TPD, and in situ DRIFTS measurements were employed. It was found that Cu-P species produced by phosphorus poisoning decreased the redox ability of active copper species, resulting in the observed low-temperature deactivation. After hydrothermal aging treatment, however, Cu-P species partly decomposed with the formation of active CuOx species and a release of active copper species. As a result, the low-temperature NH3-SCR catalytic activity of Cu-SSZ-39 catalysts was recovered.
Collapse
Affiliation(s)
- Junlin Chen
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqing Ding
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sen Xue
- Weichai Power Co., Ltd., Weifang 261061, China
| | - Xuewang Han
- Weichai Power Co., Ltd., Weifang 261061, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zidi Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Yunbo Yu
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology. Catalysts 2022. [DOI: 10.3390/catal13010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The diesel engine is utilized in most commercial vehicles to carry items from various firms; nevertheless, diesel engines emit massive amounts of nitrogen oxides (NOx) which are harmful to human health. A typical approach for reducing NOx emissions from diesel engines is the selective catalytic reduction (SCR) system; however, several reasons make reducing NOx emissions a challenge: urea particles frequently become solid in the injector and difficult to disseminate across the system; the injector frequently struggles to spray the smaller particles of urea; the larger urea particles from the injector readily cling to the system; it is also difficult to evaporate urea droplets because of the exhaust and wall temperatures (Tw), resulting in an increase in solid deposits in the system, uncontrolled ammonia water solution injection, and NOx emissions problems. The light-duty diesel engine (LDD), medium-duty diesel engine (MDD), heavy-duty diesel engine (HDD), and marine diesel engine use different treatments to optimize NOx conversion efficiency in the SCR system. This review analyzes several studies in the literature which aim to increase NOx conversion in different diesel engine types. The approach and methods demonstrated in this study provide a suitable starting point for future research into reducing NOx emissions from diesel engines, particularly for engines with comparable specifications.
Collapse
|