1
|
Zhang Y, Jamal R, Xie S, Abdurexit A, Abdiryim T, Zhang Y, Song Y, Liu Y. Poly (3, 4-propylenedioxythiophene)/Hollow carbon sphere composites supported Pt NPs to facilitate methanol oxidation reactions. J Colloid Interface Sci 2024; 659:235-247. [PMID: 38176233 DOI: 10.1016/j.jcis.2023.12.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Direct methanol fuel cells (DMFCs) are thought of as portable, sustainable, and non-polluting energy devices. The exploration of efficient and affordable catalysts for the methanol oxidation reaction (MOR) is significant for the industrial application of DMFCs. In this study, nitrogen-doped hollow carbon spheres (HCS) derived from polydopamine were proposed for the catalyst support for platinum nanoparticles (Pt NPs) for serving as the anode catalyst for DMFCs, and a composite support material was fabricated by in-situ oxidation of 3,4-ethylenedioxythiophene (ProDOT) with HCS to get core-shell structured poly(3,4-propylenedioxythiophene) (PProDOT)-embellished hollow carbon spheres (HCS) (PProDOT/HCS) for further improving the catalytic activity for supported catalyst. The results indicated that the platinum (Pt) on the surface of HCS was well dispersed, and the Pt became smaller and more evenly distributed with the introduction of PProDOT. Simultaneously, the Schottky junction formed between PProDOT and Pt NPs contributes to enhanced charge transfer and catalytic activity of the catalyst. Notably, the core-shell structure of the ternary catalyst, its excellent charge transfer capability, and the interaction between platinum and the support contribute to its high electrocatalytic activity. Electrochemical tests demonstrated that the PProDOT/HCS/Pt catalyst exhibited a mass activity of 1169.6 mA mg-1Pt for methanol oxidation in acidic electrolytes, surpassing the activity of the HCS/Pt catalyst (472.4 mA mg-1Pt) and commercial Pt/C (281.0 mA mg-1Pt).
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Abdukeyum Abdurexit
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Yaolong Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yajun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
2
|
Fernández-Lodeiro A, Lodeiro JF, Losada-Garcia N, Nuti S, Capelo-Martinez JL, Palomo JM, Lodeiro C. Copper(i) as a reducing agent for the synthesis of bimetallic PtCu catalytic nanoparticles. NANOSCALE ADVANCES 2023; 5:4415-4423. [PMID: 37638153 PMCID: PMC10448313 DOI: 10.1039/d3na00158j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
This work investigates the potential utilization of Cu(i) as a reducing agent for the transformation of the platinum salt K2PtCl4, resulting in the production of stable nanoparticles. The synthesized nanoparticles exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers a convenient and accessible methodology for the production of bimetallic nanostructures. The catalytic properties of these novel nanomaterials have been explored in various applications, including their use as artificial metalloenzymes and in the degradation of dyes. The findings underscore the significant potential of Cu(i)-mediated reduction in the development of functional nanomaterials with diverse catalytic applications.
Collapse
Affiliation(s)
- Adrián Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Javier Fernández Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC Marie Curie 2 Madrid 28049 Spain
| | - Silvia Nuti
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - José Luis Capelo-Martinez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC Marie Curie 2 Madrid 28049 Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| |
Collapse
|
3
|
On the viability of chitosan-derived mesoporous carbons as supports for PtCu electrocatalysts in PEMFC. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Superior Performance of an Iron-Platinum/Vulcan Carbon Fuel Cell Catalyst. Catalysts 2022. [DOI: 10.3390/catal12111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This work reports on the synthesis of iron-platinum on Vulcan carbon (FePt/VC) as an effective catalyst for the electrooxidation of molecular hydrogen at the anode, and electroreduction of molecular oxygen at the cathode of a proton exchange membrane fuel cell. The catalyst was synthesized by using the simple polyol route and characterized by XRD and HRTEM along with EDS. The catalyst demonstrated superior electrocatalytic activity for the oxygen reduction reaction and the oxidation of hydrogen with a 2.4- and 1.2-fold increase compared to platinum on Vulcan carbon (Pt/VC), respectively. Successful application of FePt/VC catalyst in a self-breathing fuel cell also showed a 1.7-fold increase in maximum power density compared to Pt/VC. Further analysis by accelerated stress test demonstrated the superior stability of FePt on the VC substrate with a 4% performance degradation after 60,000 cycles. In comparison, a degradation of 6% after 10,000 cycles has been reported for Pt/Ketjenblack.
Collapse
|