1
|
Tabakova T. State of the Art and Challenges in Complete Benzene Oxidation: A Review. Molecules 2024; 29:5484. [PMID: 39598873 PMCID: PMC11597454 DOI: 10.3390/molecules29225484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Increased levels and detrimental effects of volatile organic compounds (VOCs) on air quality and human health have become an important issue in the environmental field. Benzene is classified as one of the most hazardous air pollutants among non-halogenated aromatic hydrocarbons with toxic, carcinogenic, and mutagenic effects. Various technologies have been applied to decrease harmful emissions from various sources such as petrochemistry, steel manufacturing, organic chemical, paint, adhesive, and pharmaceutical production, vehicle exhausts, etc. Catalytic oxidation to CO2 and water is an attractive approach to VOC removal due to high efficiency, low energy consumption, and the absence of secondary pollution. However, catalytic oxidation of the benzene molecule is a great challenge because of the extraordinary stability of its six-membered ring structure. Developing highly efficient catalysts is of primary importance for effective elimination of benzene at low temperatures. This review aims to summarize and discuss some recent advances in catalyst composition and preparation strategies. Advantages and disadvantages of using noble metal-based catalysts and transition metal oxide-based catalysts are addressed. Effects of some crucial factors such as catalyst support nature, metal particle size, electronic state of active metal, redox properties, reactivity of lattice oxygen and surface adsorbed oxygen on benzene removal are explored. Thorough elucidation of reaction mechanisms in benzene oxidation is a prerequisite to develop efficient catalysts. Benzene oxidation mechanisms are analyzed based on in situ catalyst characterization, reaction kinetics, and theoretical simulation calculations. Considering the role of oxygen vacancies in improving catalytic performance, attention is given to oxygen defect engineering. Catalyst deactivation due to coexistence of water vapor and other pollutants, e.g., sulfur compounds, is discussed. Future research directions for rational design of catalysts for complete benzene oxidation are provided.
Collapse
Affiliation(s)
- Tatyana Tabakova
- Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Iliopoulou EF, Pachatouridou E, Lappas AA. Novel Nanostructured Pd/Co-Alumina Materials for the Catalytic Oxidation of Atmospheric Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:124. [PMID: 38202579 PMCID: PMC10780546 DOI: 10.3390/nano14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Cobalt-doped alumina catalysts were prepared using different methods, either conventional wet impregnation (WI) and/or advanced spray impregnation (SI), and they were evaluated as novel oxidation catalysts for CO and MeOH oxidation. The spray impregnation technique was used with the aim of achieving the synthesis of core-shell catalytic nanostructures to secure the chemical/thermal stability of active sites on the catalyst carrier. The catalysts were further promoted with a low Pd content (0.5 wt.%) incorporated via either incipient wetness impregnation (DI) or spray impregnation. The results revealed the superior performance of the spray-impregnated catalysts (Co/γ-Al2O3-SI) for both reactions. The deposition of Co oxide on the outer surface of the alumina particle (SEM images) and the availability of the active Co phase resulted in the enhancement of the Co/γ-Al2O3 catalysts' oxidation activity. Pd incorporation increased the catalysts' reducibility (TPR-H2) and improved the catalysts' performance for both reactions. However, the Pd incorporation method affected the catalytic performance; with the SI method, the active phase of Co3O4 was probably covered with PdO and was not available for the oxidation reactions. On the contrary, the incorporation of Pd with the DI method resulted in a better dispersion of PdO all over the Co/Al catalyst surface, maintaining available Co active sites and a better Pd-Co interaction. MeOH desorption studies revealed the methanol oxidation mechanism: the Co/Al catalysts promoted the partial oxidation of MeOH to formaldehyde (HCHO) and dehydration to dimethyl ether (DME), while the Pd-based Co/Al catalysts enhanced the complete oxidation of methanol to CO2 and H2O.
Collapse
Affiliation(s)
- Eleni F. Iliopoulou
- Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas (CPERI), CERTH, Thermi, GR-57001 Thessaloniki, Greece; (E.P.); (A.A.L.)
| | | | | |
Collapse
|
3
|
Xu Y, Gao L, Wu P, Ding Z. Novel Mesoporous and Multilayered Yb/N-Co-Doped CeO 2 with Enhanced Oxygen Storage Capacity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5478. [PMID: 37570182 PMCID: PMC10419958 DOI: 10.3390/ma16155478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
A cubic fluorite-type CeO2 with mesoporous multilayered morphology was synthesized by the solvothermal method followed by calcination in air, and its oxygen storage capacity (OSC) was quantified by the amount of O2 consumption per gram of CeO2 based on hydrogen temperature programmed reduction (H2-TPR) measurements. Doping CeO2 with ytterbium (Yb) and nitrogen (N) ions proved to be an effective route to improving its OSC in this work. The OSC of undoped CeO2 was 0.115 mmol O2/g and reached as high as 0.222 mmol O2/g upon the addition of 5 mol.% Yb(NO3)3∙5H2O, further enhanced to 0.274 mmol O2/g with the introduction of 20 mol.% triethanolamine. Both the introductions of Yb cations and N anions into the CeO2 lattice were conducive to the formation of more non-stoichiometric oxygen vacancy (VO) defects and reducible-reoxidizable Cen+ ions. To determine the structure performance relationships, the partial least squares method was employed to construct two linear functions for the doping level vs. lattice parameter and [VO] vs. OSC/SBET.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China;
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China
| | - Liangjuan Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China;
| | - Pingkeng Wu
- Department of Chemical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Zhao Ding
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
| |
Collapse
|
4
|
Zhao Z, Ma S, Gao B, Bi F, Qiao R, Yang Y, Wu M, Zhang X. A systematic review of intermediates and their characterization methods in VOCs degradation by different catalytic technologies. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Soukup K, Topka P, Kupčík J, Solcova O. Platinum Nanoparticles Immobilized on Electrospun Membranes for Catalytic Oxidation of Volatile Organic Compounds. MEMBRANES 2023; 13:110. [PMID: 36676917 PMCID: PMC9864639 DOI: 10.3390/membranes13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Structured catalytic membranes with high porosity and a low pressure drop are particularly suitable for industrial processes carried out at high space velocities. One of these processes is the catalytic total oxidation of volatile organic compounds, which is an economically feasible and environmentally friendly way of emission abatement. Noble metal catalysts are typically preferred due to high activity and stability. In this paper, the preparation of a thermally stable polybenzimidazole electrospun membrane, which can be used as a support for a platinum catalyst applicable in the total oxidation of volatile organic compounds, is reported for the first time. In contrast to commercial pelletized catalysts, high porosity of the membrane allowed for easy accessibility of the platinum active sites to the reactants and the catalytic bed exhibited a low pressure drop. We have shown that the preparation conditions can be tuned in order to obtain catalysts with a desired platinum particle size. In the gas-phase oxidation of ethanol, acetone, and toluene, the catalysts with Pt particle sizes 2.1 nm and 26 nm exhibited a lower catalytic activity than that with a Pt particle size of 12 nm. Catalysts with a Pt particle size of 2.1 nm and 12 nm were prepared by equilibrium adsorption, and the higher catalytic activity of the latter catalyst was ascribed to more reactive adsorbed oxygen species on larger Pt nanoparticles. On the other hand, the catalyst with a Pt particle size of 26 nm was prepared by a solvent evaporation method and contained less active polycrystalline platinum. Last but not least, the catalyst containing only 0.08 wt.% of platinum achieved high conversion (90%) of all the model volatile organic compounds at moderate temperatures (lower than 335 °C), which is important for reducing the costs of the abatement technology.
Collapse
Affiliation(s)
- Karel Soukup
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| | - Pavel Topka
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| | - Jaroslav Kupčík
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
- FZU-Institute of Physics of the Czech Academy of Sciences, CZ-182 00 Prague, Czech Republic
| | - Olga Solcova
- Institute of Chemical Process Fundamentals of the CAS, CZ-165 00 Prague, Czech Republic
| |
Collapse
|
6
|
Elimination of Indoor Volatile Organic Compounds on Au/SBA-15 Catalysts: Insights into the Nature, Size, and Dispersion of the Active Sites and Reaction Mechanism. Catalysts 2022. [DOI: 10.3390/catal12111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gold catalysts, with different particle sizes ranging from 19 to 556 Å, and supported on SBA-15 mesoporous silica, were prepared by using deposition-precipitation, co-precipitation, and impregnation methods. All samples were characterised by TEM, EXAFS, XPS, XRD, CFR (Continuous Flow Reactor), and TPR. The sample which proved to have the highest activity was characterised by TAP (Temporal Analysis of Products) as well. XPS, wide-angle XRD, EXAFS, and H2-TPR measurements and data analysis confirmed that gold was present as Au0 only on all samples. The size of the Au nanoparticle was determined from TEM measurements and confirmed through wide-angle XRD measurements. EXAFS measurements showed that as the Au-Au coordination number decreased the Au-Au bond length decreased. TEM data analysis revealed a dispersion range from 58% (for the smallest particle size) to 2% (for the highest particle size). For Au particles’ sized lower that 60 Å, the Au dispersion was determined using a literature correlation between the dispersion and EXAFS Au-Au coordination number, and was in good agreement with the dispersion data obtained from TEM. The Au dispersion decreased as the particle size increased. CFR experiments validated the relationship between the size of the gold particles in a sample and the sample’s catalytic activity towards acetone oxidation. The lowest temperature for the acetone 100% conversion, i.e., 250 °C, was observed over the reduced catalyst sample with the smallest particle size. This sample not only showed the highest catalytic activity towards acetone conversion, but, at the same time, showed high reaction stability, as catalyst lifetime tests, performed for 25 h in a CFR at 270 °C for the as-synthesised sample, and at 220 °C for the reduced sample, have confirmed. TAP (Temporal Analysis of Products) measurements and data analysis confirmed a weak competitive adsorption of acetone and oxygen over the Au/SBA-15 sample. Based on TAP data, a combination of Eley–Rideal and Langmuir–Hinshelwood mechanisms for acetone complete oxidation was proposed.
Collapse
|
7
|
The Emergence of the Ubiquity of Cerium in Heterogeneous Oxidation Catalysis Science and Technology. Catalysts 2022. [DOI: 10.3390/catal12090959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Research into the incorporation of cerium into a diverse range of catalyst systems for a wide spectrum of process chemistries has expanded rapidly. This has been evidenced since about 1980 in the increasing number of both scientific research journals and patent publications that address the application of cerium as a component of a multi-metal oxide system and as a support material for metal catalysts. This review chronicles both the applied and fundamental research into cerium-containing oxide catalysts where cerium’s redox activity confers enhanced and new catalytic functionality. Application areas of cerium-containing catalysts include selective oxidation, combustion, NOx remediation, and the production of sustainable chemicals and materials via bio-based feedstocks, among others. The newfound interest in cerium-containing catalysts stems from the benefits achieved by cerium’s inclusion, which include selectivity, activity, and stability. These benefits arise because of cerium’s unique combination of chemical and thermal stability, its redox active properties, its ability to stabilize defect structures in multicomponent oxides, and its propensity to stabilize catalytically optimal oxidation states of other multivalent elements. This review surveys the origins and some of the current directions in the research and application of cerium oxide-based catalysts.
Collapse
|
8
|
Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts 2022. [DOI: 10.3390/catal12070705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Formaldehyde (HCHO) is recognized as one of the most emitted indoor air pollutants with high detrimental effect on human health. Significant research efforts are focused on HCHO removal to meet emission regulations in an effective and economically profitable way. For over three decades, the unique electronic properties and catalytic abilities of nano-gold catalysts continue to be an attractive research area for the catalytic community. Recently, we reported that mechanochemical mixing is a relevant approach to the preparation of Co-Ce mixed oxides with high activity in complete benzene oxidation. A trend of higher surface defectiveness, in particular, oxygen vacancies, caused by close interaction between cobalt oxide and cerium oxide phases, was observed for a mixed oxide composition of 70 wt.% Co3O4 and 30 wt.% CeO2. These results directed further improvement by promotion with gold and optimization of mixed oxide composition, aiming for the development of an efficient catalyst for room temperature HCHO abatement. Support modification with potassium was studied; however, the K addition caused less enhancement of HCHO oxidation activity than expected. This motivated the preparation of new carrier material. In addition to Co3O4-CeO2 mixed metal oxides with preset ratio, γ-Al2O3 intentionally containing 33% boehmite and shortly named Al2O3-b was used for synthesis. Analysis of the role of support composition in HCHO oxidation was based on the characterization of nano-gold catalysts by textural measurements, XRD, HRTEM, XPS, and TPR techniques. Gold supported on mechanochemically treated Co3O4-CeO2-Al2O3-b (50 wt.% Al2O3-b) exhibited superior activity owing to high Ce3+ and Co3+ surface amounts and the most abundant oxygen containing species with enhanced mobility. This catalyst achieved oxidation to CO2 and H2O by 95% HCHO conversion at room temperature and 100% at 40 °C, thus implying the potential of this composition in developing efficient catalytic materials for indoor air purification.
Collapse
|
9
|
Abstract
The epoxidation of propene without forming a substantial amount of byproducts is one of the holy grails of catalysis. Supported Cu, Ag and Au catalysts are studied for this reaction and the activity of the supported metals is generally well understood. On the contrary, limited information is available on the influence of the support on the epoxide selectivity. The reaction of propene with equal amounts of hydrogen and oxygen was tested over gold nanoparticles deposited onto CeO2, TiO2, WO3, γ-Al2O3, SiO2, TiO2-SiO2 and titanosilicate-1. Several metal oxide supports caused further conversion of the synthesized propene oxide. Strongly acidic supports, such as WO3 and titanosilicate-1, catalyzed the isomerization of propene oxide towards propanal and acetone. Key factors for achieving high PO selectivity are having inert or neutralized surface sites, a low specific surface and/or a low density of surface -OH groups. This work provides insights and practical guidelines to which metal oxide support properties lead to which products in the reaction of propene in the presence of oxygen and hydrogen over supported gold catalysts.
Collapse
|
10
|
Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts 2022. [DOI: 10.3390/catal12010063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Volatile organic compounds (VOCs) are toxic and are considered the most important sources for the formation of photochemical smog, secondary organic aerosols (SOAs), and ozone. These can also greatly affect the environment and human health. For this reason, VOCs are removed by applying various technologies or reused after recovery. Catalytic oxidation for VOCs removal is widely applied in the industry and is regarded as an efficient and economical method compared to other VOCs removal technologies. Currently, a large amount of VOCs are generated in industries with solvent-based processes, and the ratio of aromatic compounds is high. This paper covers recent catalytic developments in VOC combustion over noble-metal-based catalysts. In addition, this report introduces recent trends in the development of the catalytic mechanisms of VOC combustion and the deactivation of catalysts, such as coke formation, poisoning, sintering, and catalyst regeneration. Since VOC oxidation by noble metal catalysts depends on the support of and mixing catalysts, an appropriate catalyst should be used according to reaction characteristics. Moreover, noble metal catalysts are used together with non-noble metals and play a role in the activity of other catalysts. Therefore, further elucidation of their function and catalytic mechanism in VOC removal is required.
Collapse
|
11
|
Woźniak P, Kraszkiewicz P, Małecka MA. Hierarchical Au/CeO 2 systems – influence of Ln 3+ dopants on the catalytic activity in the propane oxidation process. CrystEngComm 2022. [DOI: 10.1039/d2ce00827k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The catalytic activity of the hierarchical tube-like Au/Ce1−xLnxO2−x/2 in the propane oxidation process depends not only on the presence of Au nanoparticles on the support surface but also on the type of deformation in the CeO2 network.
Collapse
Affiliation(s)
- Piotr Woźniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| | - Piotr Kraszkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| | - Małgorzata A. Małecka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|