1
|
Wei L, Wu H, Wang X, Wen L, Cui B, Cheng Y. Comprehensive review of plant-derived anti-hyperlipidemia peptides: Production, anti-hyperlipidemia mechanism, and structure-activity relationship study. Food Chem 2024; 461:140715. [PMID: 39178542 DOI: 10.1016/j.foodchem.2024.140715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/26/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
Hyperlipidemia, an elevated level of cholesterol and/or triglycerides, has become a major public health problem worldwide. Although drugs intervention is effective in treating hyperlipidemia, most of them have adverse side effects. Peptides from natural plants with high anti-hyperlipidemic activity and a strong safety profile have emerged as promising candidates to prevent and ameliorate hyperlipidemia. This review summarizes the recent advances in plant-derived anti-hyperlipidemic peptides in terms of their sources, production, purification, identification, and activity evaluation. The focus is extended to their potential anti-hyperlipidemic mechanisms and structure-function relationships. Bioactive peptides derived from various plant sources, especially peptides containing hydrophobic and/or acidic amino acids, have shown remarkable effects in hyperlipidemic treatment. Their anti-hyperlipidemic effects are mediated by various mechanisms, including regulation of cholesterol metabolism and triglyceride metabolism, inhibition of inflammation-related metabolic syndrome, and modulation of the gut microbiota. Further evaluation of the stability, bioavailability, and clinical efficacy of these peptides is recommended.
Collapse
Affiliation(s)
- Liuyi Wei
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Xufeng Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
R. S, D. M, M.G. MN, N. V, N. T, Kim JW. An Investigation of Pepsin Hydrolysate of Short Antibacterial Peptides Derived from Limnospira Sp. Appl Biochem Biotechnol 2022; 194:5580-5593. [DOI: 10.1007/s12010-022-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
|
3
|
Patil PJ, Usman M, Zhang C, Mehmood A, Zhou M, Teng C, Li X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr Rev Food Sci Food Saf 2022; 21:1732-1776. [PMID: 35142435 DOI: 10.1111/1541-4337.12911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/07/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
Food-derived bioactive peptides (BAPs) are recently utilized as functional food raw materials owing to their potential health benefits. Although there is a huge amount of scientific research about BAPs' identification, purification, characterization, and physiological functions, and subsequently, many BAPs have been marketed, there is a paucity of review on the regulatory requirements, bioavailability, and safety of BAPs. Thus, this review focuses on the toxic peptides that could arise from their primary proteins throughout protein extraction, protein pretreatment, and BAPs' formulation. Also, the influences of BAPs' length and administration dosage on safety are summarized. Lastly, the challenges and possibilities in BAPs' bioavailability and regulatory requirements in different countries were also presented. Results revealed that the human studies of BAPs are essential for approvals as healthy food and to prevent the consumers from misinformation and false promises. The BAPs that escape the gastrointestinal tract epithelium and move to the stomach are considered good peptides and get circulated into the blood using different pathways. In addition, the hydrophobicity, net charge, molecular size, length, amino acids composition/sequences, and structural characteristics of BAPs are critical for bioavailability, and appropriate food-grade carriers can enhance it. The abovementioned features are also vital to optimize the solubility, water holding capacity, emulsifying ability, and foaming property of BAPs in food products. In the case of safety, the possible allergenic and toxic peptides often exhibit physiological functions and could be produced during the hydrolysis of food proteins. It was also noted that the production of iso-peptides bonds and undesirable Maillard reaction might occur during protein extraction, sample pretreatments, and peptide synthesis.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Mingchun Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China.,Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|