1
|
Steyn A, Viljoen-Bloom M, Van Zyl WH. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion. FEMS Microbiol Lett 2023; 370:6988173. [PMID: 36646426 PMCID: PMC10086307 DOI: 10.1093/femsle/fnad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Saccharomyces cerevisiae with its robustness and good acid tolerance, is an attractive candidate for use in various industries, including waste-based biorefineries where a high-value organic acid is produced, such as fumaric acid could be beneficial. However, this yeast is not a natural producer of dicarboxylic acids, and genetic engineering of S. cerevisiae strains is required to achieve this outcome. Disruption of the natural FUM1 gene and the recombinant expression of fumarase and malate transporter genes improved the malic acid-to-fumaric acid conversion by engineered S. cerevisiae strains. The efficacy of the strains was significantly influenced by the source of the fumarase gene (yeast versus bacterial), the presence of the XYNSEC signal secretion signal and the available oxygen in synthetic media cultivations. The ΔFUM1Ckr_fum + mae1 and ΔFUM1(ss)Ckr_fum + mae1 strains converted extracellular malic acid into 0.98 and 1.11 g/L fumaric acid under aerobic conditions.
Collapse
Affiliation(s)
- Annica Steyn
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Willem Heber Van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
2
|
Almhofer L, Paulik C, Bammer D, Schlackl K, Bischof RH. Contaminations Impairing an Acetic Acid Biorefinery: Liquid-Liquid Extraction of Lipophilic Wood Extractives with Fully Recyclable Extractants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Bioconversion of Some Agro-Residues into Organic Acids by Cellulolytic Rock-Phosphate-Solubilizing Aspergillus japonicus. FERMENTATION 2022. [DOI: 10.3390/fermentation8090437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological-based conversion of agricultural residues into bioactive compounds may be considered to be the basis for various vital industries. However, finding a suitable microorganism is a challenge in the bioconversion process. Therefore, this study was conducted to find local fungal isolates able to convert a combination of plant biomass residues into organic acids (OAs). Based on their cellulase and phytase activities and rock phosphate (RP) solubilization potential, an efficient 15 fungal isolates (named F1 to F15) were selected and identified by both morphological and molecular methods using the 18S rRNA sequencing technique. The best fungal isolate (F15) was identified as Aspergillus japonicus. After 4 weeks of incubation below solid-state fermentation (SSF) with a mix of sugarcane bagasse and faba bean straw (3:7), with 7.5% (v/w) fungal inoculum to the growth medium, the biodegradation process by the fungus reached its peak, i.e., maximum cellulolytic activity and RP solubilization ability. Under such fermentation conditions, seven organic acids were detected using HPLC, in the following order: ascorbic acid > oxalic acid > formic acid > malic acid > succinic acid > lactic acid > citric acid. Based on the results, Aspergillus japonicus (F15) could produce OAs and cellulose enzymes, and could be considered a new single-step bio-converter of sugarcane bagasse and faba bean straw residues into OAs. Furthermore, this fungus could be a new source of fungal cellulose, and could present a practical approach to reducing environmental contamination. Additional work is encouraged for more optimization of fermentation conditions.
Collapse
|
4
|
Opoku PA, Jingyu H, Yi L, Guang L, Norgbey E. Scaled-up multi-anode shared cathode microbial fuel cell for simultaneous treatment of multiple real wastewaters and power generation. CHEMOSPHERE 2022; 299:134401. [PMID: 35339526 DOI: 10.1016/j.chemosphere.2022.134401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) is lauded for its capacity to valorize organic substrates in wastes, providing a solution to environmental pollution and energy crisis. While different types of organic substrates affect removal efficiency and current output, most MFCs are designed to only be able to utilize one type of wastewater. However, many real wastewater treatment sites generate more than one type of wastewater which hinders the installation of most MFCs. This study aimed to investigate the performance of the novel-designed multi-anode shared cathode MFC (MASC-MFC) compared with a standard single anode/cathode MFC (SAC-MFC) and the simultaneous treatment of different types of real wastewaters (sewage, slaughterhouse, and hospital) in one MFC unit. The MASC-MFC (9025 mW/m2 at 23.332 mA/m2) produced 1.7 times and 1.6 times higher in power density and current density and 2.2 times lower in internal resistance than the standard single anode/cathode MFC (SAC-MFC). A maximum COD removal efficiency of 62.7% was achieved with synthetic wastewater. Feeding the MASC-MFC with multiple real wastewaters decreased maximum power density 3.5 (2599 mW/m2) times and increased internal resistance 2.7 times. Stable current generation 1.575 mA was achieved over 300 h despite the different and complex wastewater physio-chemical compositions. The MASC-MFC achieved over 40% and approximately 30% coulombic efficiency independently in all the anode chambers irrespective of the type of real wastewater used, demonstrating the MASC-MFC's capacity to treat different real wastewaters with the added benefit of electricity production.
Collapse
Affiliation(s)
- Prince Atta Opoku
- Hohai University, College of Environment, No. 1 Xikang Road, 210098, Nanjing, PR China.
| | - Huang Jingyu
- Hohai University, College of Environment, No. 1 Xikang Road, 210098, Nanjing, PR China.
| | - Li Yi
- Hohai University, College of Environment, No. 1 Xikang Road, 210098, Nanjing, PR China
| | - Li Guang
- Jilin Jianzhu University, Key Laboratory of Song Liao Aquatic Environment, Changchun, 130118, Jilin, China
| | - Eyram Norgbey
- Hohai University, College of Environment, No. 1 Xikang Road, 210098, Nanjing, PR China
| |
Collapse
|
5
|
Holtzapple MT, Wu H, Weimer PJ, Dalke R, Granda CB, Mai J, Urgun-Demirtas M. Microbial communities for valorizing biomass using the carboxylate platform to produce volatile fatty acids: A review. BIORESOURCE TECHNOLOGY 2022; 344:126253. [PMID: 34728351 DOI: 10.1016/j.biortech.2021.126253] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The carboxylate platform employs a diverse microbial consortium of anaerobes in which the methanogens are inhibited. Nearly all biomass components are digested to a mixture of C1-C8 monocarboxylic acids and their corresponding salts. The methane-arrested anaerobic digestion proceeds readily without needing to sterilize biomass or equipment. It accepts a wide range of feedstocks (e.g., agricultural residues, municipal solid waste, sewage sludge, animal manure, food waste, algae, and energy crops), and produces high product yields. This review highlights several important aspects of the platform, including its thermodynamic underpinnings, influences of inoculum source and operating conditions on product formation, and downstream chemical processes that convert the carboxylates to hydrocarbon fuels and oxygenated chemicals. This review further establishes the carboxylate platform as a viable and economical route to industrial biomass utilization.
Collapse
Affiliation(s)
- Mark T Holtzapple
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Haoran Wu
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA; Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Paul J Weimer
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rachel Dalke
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Cesar B Granda
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | - Jesse Mai
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
| | - Meltem Urgun-Demirtas
- Applied Materials Division, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA.
| |
Collapse
|
6
|
Saratale RG, Cho SK, Saratale GD, Kumar M, Bharagava RN, Varjani S, Kadam AA, Ghodake GS, Palem RR, Mulla SI, Kim DS, Shin HS. An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery. Polymers (Basel) 2021; 13:polym13244297. [PMID: 34960848 PMCID: PMC8704710 DOI: 10.3390/polym13244297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/02/2022] Open
Abstract
Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
- Correspondence:
| | - Manu Kumar
- Department of Life Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Korea;
| | - Ram Naresh Bharagava
- Department of Environmental Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University, Vidya Vihar 226 025, Uttar Pradesh, India;
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India;
| | - Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea; (R.G.S.); (A.A.K.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si 10326, Gyonggido, Korea; (S.-K.C.); (G.S.G.)
| | - Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University Biomedical, Campus 32, Seoul 10326, Korea;
| | - Sikandar I. Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore 560 064, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Korea;
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si 10326, Gyeonggido, Korea;
| |
Collapse
|