1
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Saleem S, Khalid S, Nazir A, Khan Y, Ali M. Modification of polyurethane foams with zinc sulfide nanoparticles and their novel composites with multani mitti and charcoal for oil spill cleanup. RSC Adv 2024; 14:25393-25408. [PMID: 39139245 PMCID: PMC11320194 DOI: 10.1039/d4ra03924f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
With the rapid growth of the automobile industry, the excessive number of industrial pollutants, particularly oil spills, has become a huge threat to the natural environment. Therefore, an environmentally benign and sustainable solution is required for an effective oil spill cleanup. To enhance the sorption capacity of pristine polyurethane (PU) foam used in oil spill cleanup, ZnS nanoparticles were deposited on PU foam via a coprecipitation approach. Additionally, the effect of Fuller's earth, locally known as Multani Mitti (MM), and charcoal (CC) on the sorption properties of the PU foam were investigated and compared. Polyvinyl alcohol (PVA) was used as a binder during the modification procedure. The morphology, chemical composition, and thermal stability of ZnS/MM/PVA- and ZnS/CC/PVA-modified PU sorbents were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and X-ray photon spectroscopy (XPS). The modified PU foam exhibited outstanding properties including a high sorption capacity, high selectivity to different types of used oils such as vegetable oil, hydraulic oil, lube oil, and gear oil, and superior reusability in comparison to pristine PU foam. ZnS/CC/PVA has a sorption capacity of 16.78 g g-1 while ZnS/MM/PVA exhibited a sorption capacity of 16 g g-1. In addition, after 10 cycles of oil sorption-squeezing experiments, the oil sorption capacity remained unchanged, and the absorbed used oil could be removed and collected by an easy squeezing procedure prior to reuse. This work reveals that the ZnS/CC/PVA- and ZnS/MM/PVA-modified PU foams have a promising potential for oil spill removal and environmental protection.
Collapse
Affiliation(s)
- Shumaila Saleem
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur Pakistan
- Nanosciences & Technology Department, National Centre for Physics, Quaid-e-Azam University Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Sadia Khalid
- Nanosciences & Technology Department, National Centre for Physics, Quaid-e-Azam University Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Aalia Nazir
- Institute of Physics, The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Yaqoob Khan
- Nanosciences & Technology Department, National Centre for Physics, Quaid-e-Azam University Campus Shahdra Valley Road Islamabad 45320 Pakistan
| | - Majid Ali
- Thermal Energy Engineering Department, National University of Science and Technology (NUST) Islamabad Pakistan
| |
Collapse
|
3
|
Chia XK, Hadibarata T, Kristanti RA, Jusoh MNH, Tan IS, Foo HCY. The function of microbial enzymes in breaking down soil contaminated with pesticides: a review. Bioprocess Biosyst Eng 2024; 47:597-620. [PMID: 38456898 PMCID: PMC11093808 DOI: 10.1007/s00449-024-02978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024]
Abstract
The use of pesticides and the subsequent accumulation of residues in the soil has become a worldwide problem. Organochlorine (OC) pesticides have spread widely in the environment and caused contamination from past agricultural activities. This article reviews the bioremediation of pesticide compounds in soil using microbial enzymes, including the enzymatic degradation pathway and the recent development of enzyme-mediated bioremediation. Enzyme-mediated bioremediation is divided into phase I and phase II, where the former increases the solubility of pesticide compounds through oxidation-reduction and hydrolysis reactions, while the latter transforms toxic pollutants into less toxic or nontoxic products through conjugation reactions. The identified enzymes that can degrade OC insecticides include dehalogenases, phenol hydroxylase, and laccases. Recent developments to improve enzyme-mediated bioremediation include immobilization, encapsulation, and protein engineering, which ensure its stability, recyclability, handling and storage, and better control of the reaction.
Collapse
Affiliation(s)
- Xing Kai Chia
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Tony Hadibarata
- Environmental Engineering Program, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih I, Jakarta, 14430, Indonesia
| | | | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Curtin University Malaysia, CDT 250, 98009, Miri, Malaysia
| |
Collapse
|
4
|
Stability Enhancement of Aldehyde Dehydrogenase from Anoxybacillus geothermalis Strain D9 Immobilized onto Seplite LX120. Catalysts 2023. [DOI: 10.3390/catal13020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Enzyme stability is regarded as an important criterion for an industrial biocatalyst. Aldehyde dehydrogenase (ALDH) from A. geothermalis strain D9 was previously reported to exhibit good thermostability. However, this enzyme is still not suited to use in harsh environments. In this current work, we aim to see the viability of ALDH in terms of stability when immobilized into Seplite LX120. The purified ALDH was successfully immobilized via physical adsorption at 4 h with 1.25 mg/mL enzyme loading. The immobilized ALDH exhibited improved stability compared to free ALDH as the optimum temperature increased up to 80 °C and was stable with temperatures ranging from 30 to 90 °C. It was also stable in broad pH, ranging from pH 4 to pH 12. Moreover, more than 50% of the immobilized ALDH activity was retained after being stored at 25 °C and 4 °C for 9 and 11 weeks, respectively. The reusability of immobilized ALDH is up to seven cycles. The corroboration of ALDH immobilized on the Seplite LX120 was verified via Fourier-transform infrared spectroscopy, scanning electron microscopy, and a reduction in the surface area. The improved features of immobilized ALDH, especially in enzyme stability, are important for future applications.
Collapse
|
5
|
Efremenko E, Lyagin I, Aslanli A, Stepanov N, Maslova O, Senko O. Carrier Variety Used in Immobilization of His 6-OPH Extends Its Application Areas. Polymers (Basel) 2023; 15:591. [PMID: 36771892 PMCID: PMC9920489 DOI: 10.3390/polym15030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Organophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His6-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and N-acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His6-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc. The use of computer modeling methods in the development of immobilized His6-OPH samples provides in silico prediction of emerging interactions between the enzyme and immobilizing polymer, which may have negative effects on the catalytic properties of the enzyme, and selection of the best options for experiments in vitro and in vivo. This review is aimed at analysis of known developments with immobilized His6-OPH, which allows to recognize existing recent trends in this field of research, as well as to identify the reasons limiting the use of a number of polymer molecules for the immobilization of this enzyme.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
6
|
Mali H, Shah C, Patel DH, Trivedi U, Subramanian RB. Bio-catalytic system of metallohydrolases for remediation of neurotoxin organophosphates and applications with a future vision. J Inorg Biochem 2022; 231:111771. [DOI: 10.1016/j.jinorgbio.2022.111771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022]
|