1
|
Putra SSS, Chew CY, Hayyan A, Elgharbawy AAM, Taskin-Tok T, Hayyan M, Ngoh GC, Saleh J, Al Abdulmonem W, Alghsham RS, Nor MRM, Aldaihani AGH, Basirun WJ. Nanodiamonds and natural deep eutectic solvents as potential carriers for lipase. Int J Biol Macromol 2024; 270:132245. [PMID: 38729477 DOI: 10.1016/j.ijbiomac.2024.132245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/04/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
This study investigates the use of nanodiamonds (ND) as a promising carrier for enzyme immobilization and compares the effectiveness of immobilized and native enzymes. Three different enzyme types were tested, of which Rhizopus niveus lipase (RNL) exhibited the highest relative activity, up to 350 %. Under optimized conditions (1 h, pH 7.0, 40 °C), the immobilized ND-RNL showed a maximum specific activity of 0.765 U mg-1, significantly higher than native RNL (0.505 U mg-1). This study highlights a notable enhancement in immobilized lipase; furthermore, the enzyme can be recycled in the presence of a natural deep eutectic solvent (NADES), retaining 76 % of its initial activity. This aids in preserving the native conformation of the protein throughout the reusability process. A test on brine shrimp revealed that even at low concentrations, ND-RNL had minimal toxicity, indicating its low cytotoxicity. The in silico molecular dynamics simulations performed in this study offer valuable insights into the mechanism of interactions between RNL and ND, demonstrating that RNL immobilization onto NDs enhances its efficiency and stability. All told, these findings highlight the immense potential of ND-immobilized RNL as an excellent candidate for biological applications and showcase the promise of further research in this field.
Collapse
Affiliation(s)
| | - Chia Yong Chew
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Sustainable Process Engineering Centre (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| | - Amal A M Elgharbawy
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia; Bioenvironmental Engineering Research Centre (BERC), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), 53100 Kuala Lumpur, Malaysia.
| | - Tugba Taskin-Tok
- Gaziantep University, Faculty of Arts and Sciences, Department of Chemistry, Gaziantep, Turkey; Gaziantep University, Institute of Health Sciences, Department of Bioinformatics and Computational Biology, Gaziantep, Turkey
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering & Technology, Muscat University, PO Box 550, Muscat P.C.130, Sultanate of Oman.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jehad Saleh
- Chemical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ruqaih S Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohd Roslan Mohd Nor
- Halal Research Group, Academy of Islamic Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Sales‐Vallverdú A, Gasset A, Requena‐Moreno G, Valero F, Montesinos‐Seguí JL, Garcia‐Ortega X. Synergic kinetic and physiological control to improve the efficiency of Komagataella phaffii recombinant protein production bioprocesses. Microb Biotechnol 2024; 17:e14411. [PMID: 38376073 PMCID: PMC10877992 DOI: 10.1111/1751-7915.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024] Open
Abstract
The yeast Komagataella phaffii (Pichia pastoris) is currently considered a versatile and highly efficient host for recombinant protein production (RPP). Interestingly, the regulated application of specific stress factors as part of bioprocess engineering strategies has proven potential for increasing the production of recombinant products. This study aims to evaluate the impact of controlled oxygen-limiting conditions on the performance of K. phaffii bioprocesses for RPP in combination with the specific growth rate (μ) in fed-batch cultivations. In this work, Candida rugosa lipase 1 (Crl1) production, regulated by the constitutive GAP promoter, growing at different nominal μ (0.030, 0.065, 0.100 and 0.120 h-1 ) under both normoxic and hypoxic conditions in carbon-limiting fed-batch cultures is analysed. Hypoxic fermentations were controlled at a target respiratory quotient (RQ) of 1.4, with excellent performance, using an innovative automated control based on the stirring rate as the manipulated variable developed during this study. The results conclude that oxygen limitation positively affects bioprocess efficiency under all growing conditions compared. The shift from respiratory to respiro-fermentative metabolism increases bioprocess productivity by up to twofold for the specific growth rates evaluated. Moreover, the specific product generation rate (qp ) increases linearly with μ, regardless of oxygen availability. Furthermore, this hypoxic boosting effect was also observed in the production of Candida antarctica lipase B (CalB) and pro-Rhizopus oryzae lipase (proRol), thus proving the synergic effect of kinetic and physiological stress control. Finally, the Crl1 production scale-up was conducted successfully, confirming the strategy's scalability and the robustness of the results obtained at the bench-scale level.
Collapse
Affiliation(s)
- Albert Sales‐Vallverdú
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Arnau Gasset
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Guillermo Requena‐Moreno
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - José Luis Montesinos‐Seguí
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| | - Xavier Garcia‐Ortega
- Department of Chemical, Biological and Environmental EngineeringSchool of Engineering, Universitat Autònoma de BarcelonaBellaterra (Barcelona)Spain
| |
Collapse
|
3
|
Bernat-Camps N, Ebner K, Schusterbauer V, Fischer JE, Nieto-Taype MA, Valero F, Glieder A, Garcia-Ortega X. Enabling growth-decoupled Komagataella phaffii recombinant protein production based on the methanol-free P DH promoter. Front Bioeng Biotechnol 2023; 11:1130583. [PMID: 37034257 PMCID: PMC10076887 DOI: 10.3389/fbioe.2023.1130583] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
The current transition towards the circular bioeconomy requires a rational development of biorefineries to sustainably fulfill the present demands. The use of Komagataella phaffii (Pichia pastoris) can meet this challenge, since it has the capability to use crude glycerol as a carbon-source, a by-product from the biodiesel industry, while producing high- and low-added value products. Recombinant protein production (RPP) using K. phaffii has often been driven either by the methanol induced AOX1 promoter (PAOX1) and/or the constitutive GAP promoter (PGAP). In the last years, strong efforts have been focused on developing novel expression systems that expand the toolbox variety of K. phaffii to efficiently produce diverse proteins that requires different strategies. In this work, a study was conducted towards the development of methanol-free expression system based on a heat-shock gene promoter (PDH) using glycerol as sole carbon source. Using this promoter, the recombinant expression is strongly induced in carbon-starving conditions. The classical PGAP was used as a benchmark, taking for both strains the lipase B from Candida antarctica (CalB) as model protein. Titer of CalB expressed under PDH outperformed PGAP controlled expression in shake-flask cultivations when using a slow-release continuous feeding technology, confirming that PDH is induced under pseudo-starving conditions. This increase was also confirmed in fed-batch cultivations. Several optimization rounds were carried out for PDH under different feeding and osmolarity conditions. In all of them the PDH controlled process outperformed the PGAP one in regard to CalB titer. The best PDH approach reached 3.6-fold more specific productivity than PGAP fed-batch at low μ. Compared to the optimum approach for PGAP-based process, the best PDH fed-batch strategy resulted in 2.3-fold higher titer, while the specific productivity was very similar. To summarize, PDH is an inducible promoter that exhibited a non-coupled growth regulation showing high performance, which provides a methanol-free additional solution to the usual growth-coupled systems for RPP. Thus, this novel system emerges as a potential alternative for K. phaffii RPP bioprocess and for revaluing crude glycerol, promoting the transition towards a circular economy.
Collapse
Affiliation(s)
- Núria Bernat-Camps
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | | | | | - Miguel Angel Nieto-Taype
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Francisco Valero
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | | | - Xavier Garcia-Ortega
- Department of Chemical, Biological, and Environmental Engineering, School of Engineering, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- *Correspondence: Xavier Garcia-Ortega,
| |
Collapse
|
4
|
Producing Natural Flavours from Isoamyl Alcohol and Fusel Oil by Using Immobilised Rhizopus oryzae Lipase. Catalysts 2022. [DOI: 10.3390/catal12060639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Enzymatic synthesis of short-chain esters (flavours) might enable their labelling as natural, increasing their value. Covalently immobilised Rhizopus oryzae lipase (EO-proROL) was used to synthesise isoamyl butyrate and acetate. In cyclohexane, the best performer reaction solvent, 1.8 times higher yield of isoamyl butyrate (ca. 100%) than isoamyl acetate (ca. 55%) was obtained. Optimum initial acid concentration (410 mM) and acid:alcohol mole ratio (0.5) were established by a central composite rotatable design to maximise isoamyl butyrate single-batch and cumulative production with reused enzyme. These conditions were used to scale up the esterification (150 mL) and to assess yield, initial esterification rate, productivity and enzyme operational stability. Commercial isoamyl alcohol and fusel oil results were found to be similar as regards yield (91% vs. 84%), initial reaction rate (5.4 µM min−1 with both substrates), operational stability (40% activity loss after five runs with both) and productivity (31.09 vs. 28.7 mM h−1). EO-proROL specificity for the structural isomers of isoamyl alcohol was also evaluated. Thus, a successful biocatalyst and product conditions ready to be used for isoamyl ester industrial production are here proposed.
Collapse
|