1
|
Topalian J, Navas L, Ontañon O, Valacco MP, Noseda DG, Blasco M, Peña MJ, Urbanowicz BR, Campos E. Production of a bacterial secretome highly efficient for the deconstruction of xylans. World J Microbiol Biotechnol 2024; 40:266. [PMID: 38997527 DOI: 10.1007/s11274-024-04075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used. Extracellular enzymatic extracts from wheat bran (WB) or sugar cane straw (SCR) cultures had the highest xylanolytic activity, coincidently with the largest representation of carbohydrate active enzymes (CAZymes). Scaling-up to a benchtop bioreactor using WB resulted in a significant enhancement in productivity and in the overall volumetric extracellular xylanase activity, that was further concentrated by freeze-drying. The enzymatic extract was efficient in the deconstruction of xylans from different sources as well as sugar cane straw pretreated by alkali extrusion (SCRe), resulting in xylobiose and xylose, as primary products. The overall yield of xylose released from SCRe was improved by supplementing the enzymatic extract with a recombinant GH43 β-xylosidase (EcXyl43) and a GH62 α-L-arabinofuranosidase (CsAbf62A), two activities that were under-represented. Overall, we showed that the extracellular enzymatic extract from P. xylanivorans, supplemented with specific enzymatic activities, is an effective approach for targeting xylan within lignocellulosic biomass.
Collapse
Affiliation(s)
- Juliana Topalian
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina
| | - Maria Pia Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masa (CEQUIBIEM-FCEN), Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (UBA-IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Gabriel Noseda
- Instituto de Investigaciones Biotecnológicas (IIBio), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Martín Blasco
- Departamento de Bioprocesos, Instituto Nacional de Tecnología Industrial (INTI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Jesus Peña
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Breeanna R Urbanowicz
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, USA
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, Buenos Aires, B1686IGC, Argentina.
| |
Collapse
|
2
|
Srivastava S, Dafale NA. Tailored microbial consortium producing hydrolytic enzyme cocktail for maximum saccharification of wheat straw. BIORESOURCE TECHNOLOGY 2024; 399:130560. [PMID: 38460563 DOI: 10.1016/j.biortech.2024.130560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The potential of hydrolytic enzyme cocktail obtained from designed bacterial consortium WSh-1 comprising Bacillus subtilis CRN 16, Paenibacillus dendritiformis CRN 18, Niallia circulans CRN 24, Serratia marscens CRN 29, and Streptomyces sp. CRN 30, was investigated for maximum saccharification. Activity was further enhanced to 1.01 U/ml from 0.82 U/ml by supplementing growth medium with biotin and cellobiose as a cofactor and inducer. Through kinetic analysis, the enzyme cocktail showed a high wheat straw affinity with Michaelis-Menten constant (Km) of 0.68 µmol/L and a deconstruction rate (Vmax) of 4.5 U/ml/min. The statistical optimization of critical parameters increased saccharification to 89 %. The optimized process in a 5-L lab-scale bioreactor yielded 501 mg/g of reducing sugar from NaOH-pretreated wheat straw. Lastly, genomic insights revealed unique abundant oligosaccharide deconstruction enzymes with the most diverse CAZyme profile. The consortium-mediated enzyme cocktails offer broader versatility with efficiency for the economical and sustainable valorization of lignocellulosic waste.
Collapse
Affiliation(s)
- Shweta Srivastava
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant A Dafale
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Ferrari VB, Dos Santos Lima LM, de Matos Marques K, Gutierres FC, Guerini GG, Silveira MAV, de Figueiredo GM, Vital VG, Roswell MR, de Melo IS, Okamoto DN, de Vasconcellos SP. Caatinga, Amazon and Atlantic Forest as natural sources for microbial lignocellulolytic enzymes. Arch Microbiol 2024; 206:161. [PMID: 38483627 DOI: 10.1007/s00203-024-03883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 03/19/2024]
Abstract
Brazilian biomes are important sources for environmental microorganisms, including efficient metabolic machineries, like actinomycetes. These bacteria are known for their abilities to produce many bioactive compounds, including enzymes with multiple industrial applications. The present work aimed to evaluate lignocellulolytic abilities of actinomycetes isolated from soil and rhizosphere samples collected at Caatinga, Atlantic and Amazon Forest. Laccase (Lac), lignin peroxidase (LiP), manganese peroxidase (MnP) and cellulase were evaluated for their efficiency. These enzymes have an essential role in lignin decomposition, through oxidation of phenolic and non-phenolic compounds, as well as enzymatic hydrolysis of vegetal biomass. In this sense, a total of 173 actinomycetes were investigated. Eleven (11) of them were selected by their enzymatic performance. The actinomycete AC166 displayed some activity in all analysed scenarios in terms of Lac, MnP and LiP activity, while AC171 was selected as the most promising strain, showing the following activities: 29.7 U.L-1 for Lac; 2.5 U.L-1 for LiP and 23 U.L-1 for MnP. Cellulolytic activities were evaluated at two pH conditions, 4.8 and 7.4, obtaining the following results: 25 U.L-1 and 71 U.L-1, respectively. Thermostability (4, 30 and 60 o C) and salinity concentrations (0 to 4 M) and pH variation (2.0 to 9.0) stabilities of the obtained LiP and Lac enzymatic extracts were also verified. The actinomycete strain AC171 displayed an adaptable response in distinct pH and salt profiles, indicating that bacterial LiP was some halophilic type. Additionally, the strain AC149 produced an alkali and extreme halophilic lignin peroxidase, which are promising profiles for their future application under lignocellulosic biomass at bioethanol biorefineries.
Collapse
Affiliation(s)
- Vitor Baptista Ferrari
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | | | - Kelly de Matos Marques
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Fernanda Camila Gutierres
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | | | - Marghuel Aparecida Vieira Silveira
- Laboratory of Biochemistry and Enzymology, Institute of Pharmacology and Molecular Biology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Vitor Gonçalves Vital
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Mariana Rocha Roswell
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Itamar Soares de Melo
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, EMBRAPA Environment, Jaguariúna, SP, Brazil
| | - Debora Noma Okamoto
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil
| | | |
Collapse
|
4
|
Zhu Q, Huang Y, Yang Z, Wu X, Zhu Q, Zheng H, Zhu D, Lv Z, Yin Y. A Recombinant Thermophilic and Glucose-Tolerant GH1 β-Glucosidase Derived from Hehua Hot Spring. Molecules 2024; 29:1017. [PMID: 38474529 DOI: 10.3390/molecules29051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
As a crucial enzyme for cellulose degradation, β-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family β-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic β-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.
Collapse
Affiliation(s)
- Qian Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Yuying Huang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671003, China
| | - Zhengfeng Yang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Xingci Wu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Qianru Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Hongzhao Zheng
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Dan Zhu
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Zhihua Lv
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| | - Yirui Yin
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Key Laboratory of Bioinformatics and Computational Biology, Department of Education of Yunnan Province, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
5
|
Mafa MS, Malgas S. Towards an understanding of the enzymatic degradation of complex plant mannan structures. World J Microbiol Biotechnol 2023; 39:302. [PMID: 37688610 PMCID: PMC10492685 DOI: 10.1007/s11274-023-03753-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Plant cell walls are composed of a heterogeneous mixture of polysaccharides that require several different enzymes to degrade. These enzymes are important for a variety of biotechnological processes, from biofuel production to food processing. Several classical mannanolytic enzyme functions of glycoside hydrolases (GH), such as β-mannanase, β-mannosidase and α-galactosidase activities, are helpful for efficient mannan hydrolysis. In this light, we bring three enzymes into the model of mannan degradation that have received little or no attention. By linking their three-dimensional structures and substrate specificities, we have predicted the interactions and cooperativity of these novel enzymes with classical mannanolytic enzymes for efficient mannan hydrolysis. The novel exo-β-1,4-mannobiohydrolases are indispensable for the production of mannobiose from the terminal ends of mannans, this product being the preferred product for short-chain mannooligosaccharides (MOS)-specific β-mannosidases. Second, the side-chain cleaving enzymes, acetyl mannan esterases (AcME), remove acetyl decorations on mannan that would have hindered backbone cleaving enzymes, while the backbone cleaving enzymes liberate MOS, which are preferred substrates of the debranching and sidechain cleaving enzymes. The nonhydrolytic expansins and swollenins disrupt the crystalline regions of the biomass, improving their accessibility for AcME and GH activities. Finally, lytic polysaccharide monooxygenases have also been implicated in promoting the degradation of lignocellulosic biomass or mannan degradation by classical mannanolytic enzymes, possibly by disrupting adsorbed mannan residues. Modelling effective enzymatic mannan degradation has implications for improving the saccharification of biomass for the synthesis of value-added and upcycling of lignocellulosic wastes.
Collapse
Affiliation(s)
- Mpho Stephen Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, 0028 South Africa
| |
Collapse
|
6
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
7
|
Guo H, Zhao Y, Chang JS, Lee DJ. Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. BIORESOURCE TECHNOLOGY 2023; 367:128252. [PMID: 36334864 DOI: 10.1016/j.biortech.2022.128252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic hydrolysis is the key step limiting the efficiency of the biorefinery of lignocellulosic biomass. Enzymes involved in enzymatic hydrolysis and their interactions with biomass should be comprehended to form the basis for looking for strategies to improve process efficiency. This article updates the contemporary research on the properties of key enzymes in the lignocellulose biorefinery and their interactions with biomass, adsorption, and hydrolysis. The advanced analytical techniques to track the interactions for exploiting mechanisms are discussed. The challenges and prospects for future research are outlined.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhao
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan.
| |
Collapse
|
8
|
Fernandes CG, Sawant SC, Mule TA, Khadye VS, Lali AM, Odaneth AA. Enhancing cellulases through synergistic β-glucosidases for intensifying cellulose hydrolysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Luo H, Liu X, Yu D, Yuan J, Tan J, Li H. Research Progress on Lignocellulosic Biomass Degradation Catalyzed by Enzymatic Nanomaterials. Chem Asian J 2022; 17:e202200566. [PMID: 35862657 DOI: 10.1002/asia.202200566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.
Collapse
Affiliation(s)
- Hangyu Luo
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Xiaofang Liu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Dayong Yu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Junfa Yuan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Jinyu Tan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Hu Li
- Guizhou University, Center for R&D of Fine Chemicals, Huaxi Street, 550025, Guiyang, CHINA
| |
Collapse
|
10
|
Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production. Appl Biochem Biotechnol 2022; 194:5060-5082. [PMID: 35687308 DOI: 10.1007/s12010-022-04002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.
Collapse
|
11
|
Mafa MS, Rufetu E, Alexander O, Kemp G, Mohase L. Cell-wall structural carbohydrates reinforcements are part of the defence mechanisms of wheat against Russian wheat aphid (Diuraphis noxia) infestation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:168-178. [PMID: 35358867 DOI: 10.1016/j.plaphy.2022.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Russian wheat aphid (RWA) is one of the most challenging pests for wheat crops globally. In South Africa, RWA has breached the strategy of introducing resistant genes into wheat plants, and so far, five RWA biotypes with different virulence levels have been documented in the field. Our study investigated how the cell wall plays a defensive role in Tugela-Dn1 (susceptible) and-Dn5 (resistant) cultivars infested with South African RWA-biotype 2 (RWASA2). The activities of enzymes related to defense responses were measured. The cell wall's holo-cellulose content, soluble lignin and physicochemical changes were quantified in the infested susceptible and resistant cultivars. Lastly, in vitro RWASA2 saliva-associated CWDEs activity was determined on cell wall-related model substrates. The results show that apoplastic peroxidase and β-1,3-glucanase activities were significantly higher in Tugela-Dn5 relative to the control during the infestation periods. Peroxidase activity is associated with lignin cross-linking of the cell wall, which could deter RWASA2 feeding. The total phenolic and holo-cellulose contents were significantly induced in Tugela-Dn5 at 72 and 120 h post infestation (hpi). These findings were corroborated by the FTIR results, which showed that holocellulose and lignin regions of the resistant and susceptible wheat were affected by infestation at 72 hpi. However, Tugela-Dn5 reinforced cell wall content at 120 hpi. An increased crystallinity index in the resistant cultivar validated the cell wall reinforcement at 120 hpi, while Tugela-Dn1 delayed cell wall reinforcement. This study demonstrates that cell wall reinforcement's modification is part of defense responses against Russian wheat aphid infestation.
Collapse
Affiliation(s)
- Mpho S Mafa
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa.
| | - Ellen Rufetu
- Carbohydrates and Enzymology Laboratory (CHEM-LAB), Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa; Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Orbett Alexander
- Department of Chemistry, University of the Free State, 9301, Bloemfontein, South Africa
| | - Gabre Kemp
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, South Africa
| | - Lintle Mohase
- Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| |
Collapse
|