1
|
Figueroa-Torres MZ, Meneses-Rodríguez D, Obregón S, Cano A, Vázquez A, Hernández-Adame L, Ruiz-Gómez MA. Enhanced photocatalytic performance of colored Ti 2O 3-Ti 3O 5-TiO 2 heterostructure for the degradation of antibiotic ofloxacin and bactericidal effect. CHEMOSPHERE 2024; 365:143247. [PMID: 39236922 DOI: 10.1016/j.chemosphere.2024.143247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Removing emergent contaminants, such as pharmaceuticals, and inhibiting bacteria by photocatalysis represents an interesting alternative for water remediation. We report the effective preparation of colored powders containing Ti2O3, Ti3O5, and TiO2, by a simple thermal oxidation reaction of a Ti2O3 precursor from 400 °C to 800 °C. The material obtained at 500 °C (P500 sample) exhibited the highest photocatalytic performance under simulated solar light, reaching 54% degradation of antibiotic ofloxacin and a bacteria inactivation of 51% and 62% for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The superoxide anion radical was the main specie contributing to the photodegradation of ofloxacin, while the hydroxyl radical showed negligible effect. A synergy between the physicochemical properties of the phases in the P500 sample contributes to the electrons transfer, visible light absorption capability and generation of reactive oxygen species, resulting in its remarkable photoactivity. The comparison in terms of surface-specific activity revealed that the P500 sample is more efficient than commercially available TiO2 P25. This fact opens the option of using commercially available Ti2O3 and TiO2 P25 to obtain composites for promoting photoinduced reactions using natural solar light.
Collapse
Affiliation(s)
- M Z Figueroa-Torres
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Civil, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - David Meneses-Rodríguez
- CONAHCYT-Departamento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán, 97310, Mexico.
| | - Sergio Obregón
- Universidad Autónoma de Nuevo León, UANL, CICFIM-Facultad de Ciencias Físico Matemáticas, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - Arely Cano
- Solid State Electronics Section, Electrical Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute, 07360, Mexico City, Mexico.
| | - Alejandro Vázquez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, 66455, Mexico.
| | - Luis Hernández-Adame
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., 23096, Mexico.
| | - Miguel A Ruiz-Gómez
- CONAHCYT-Departamento de Física Aplicada, CINVESTAV-IPN, Antigua Carretera a Progreso km 6, Mérida, Yucatán, 97310, Mexico; División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, A.C. Camino Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P., 78216, Mexico.
| |
Collapse
|
2
|
Mishra J, Mrugesh P, Subramanian PS, Pratihar S. Co-Ti Bimetallic Complex-Induced Phase Modulation of Co@Black TiO 2 for Catalytic Hydrogenation of Cinnamaldehyde. Inorg Chem 2024; 63:10423-10433. [PMID: 38761144 DOI: 10.1021/acs.inorgchem.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Transition-metal-doped black titania, primarily in the anatase phase, shows promise for redox reactions, water splitting, hydrogen generation, and organic pollutant removal, but exploring other titania phases for broader catalytic applications is underexplored. This study introduces a synthetic approach using a Co-Ti bimetallic complex bridged by a 1,10-phenanthroline-5,6-dione ligand as a precursor for the synthesis of cobalt-doped black titania [Co@L2N@b-TiO2]. The synthesis involves precise control of pyrolysis conditions, yielding a distinct structure dominated by the rutile phase over anatase, with active cobalt encapsulated within a nitrogen-doped graphitic layer, primarily as Co0 rather than CoII and CoIII. The synthesized material is employed for the selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) under industrially viable conditions. The efficiency and selectivity of Co@L2N@b-TiO2 was compared with other catalysts, including cobalt-doped rutile TiO2 (Co@r-TiO2), anatase TiO2 (Co@a-TiO2), and black titania (Co@b-TiO2) as well as materials pyrolyzed under different atmospheres and temperatures, materials with phenanthroline ligands, and materials lacking any ligands. The superior performance of Co@L2N@b-TiO2 is attributed to its high surface area, stable Co0 within the nitrogen-doped graphitic layer, and composition of rutile and anatase phases of TiO2 and Ti2O3 (referred to as RAT), along with the synergistic interaction between RAT and Co0. These factors significantly influence the efficiency and selectivity of COL over hydrocinnamaldehyde (HCAL) and hydrocinnamyl alcohol (HCOL), indicating potential for broader applications beyond catalysis, particularly in designing of black titania-based materials.
Collapse
Affiliation(s)
- Jyotiranjan Mishra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Padariya Mrugesh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Palani S Subramanian
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| | - Sanjay Pratihar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials and Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
3
|
Ghosh S, Laha D, Hajra P, Sariket D, Ray D, Baduri S, Sahoo HS, Bhattacharya C. Development of Transition Metal Incorporated Bismuth‐Based Oxide Semiconductors as Potential Candidates for Solar Assisted Water Splitting Applications. ChemElectroChem 2023. [DOI: 10.1002/celc.202201062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Sangeeta Ghosh
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Debajit Laha
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Paramita Hajra
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Debasis Sariket
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Debasish Ray
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Swarnendu Baduri
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Himanshu Sekhar Sahoo
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| | - Chinmoy Bhattacharya
- Department of Chemistry Indian Institute of Engineering Science & Technology (IIEST) Shibpur Howrah 711103 West Bengal India
| |
Collapse
|
4
|
Photocatalytic Degradation of 4-tert-butylphenol Using Solar Light Responsive Ag2CO3. Catalysts 2022. [DOI: 10.3390/catal12121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this work, Ag2CO3 was prepared via a solution-based method and was further characterized by XRD, Raman spectroscopy, SEM/EDS analysis, and UV-VIS spectroscopy. SEM results revealed the formation of micro-sized particles with a rectangular shape. The photocatalytic activity of the catalyst was evaluated in the degradation of 4-tert-butylphenol (4-t-BP) under simulated solar light irradiation. The effects of 4-t-BP initial concentration (2.5–10 ppm), catalyst dosage (100–300 mg/L), different types of lamp sources, and water matrix were investigated. Complete 4-t-BP (5 ppm) degradation was achieved after 60 min by Ag2CO3 (200 mg/L). The effect of anions such as CO32−, HCO3−, NO3−, and Cl- in the concentration range of 100–300 mg/L was also studied. CO32− promoted the photocatalytic degradation process, while HCO3− and NO3− exhibited an inhibition effect, which was marked with increasing HCO3− and NO3− concentrations. The presence of Cl− at the concentration of 100 mg/L increased 4-t-BP degradation, but higher concentrations inhibited the photocatalytic reaction. Cyclic experiments showed that the catalyst practically retained its catalytic activity toward 4-t-BP degradation after three successive experimental runs.
Collapse
|
5
|
Degradation of 4-Tert-Butylphenol in Water Using Mono-Doped (M1: Mo, W) and Co-Doped (M2-M1: Cu, Co, Zn) Titania Catalysts. NANOMATERIALS 2022; 12:nano12142326. [PMID: 35889551 PMCID: PMC9318463 DOI: 10.3390/nano12142326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
Mono-doped (Mo-TiO2 and W-TiO2) and co-doped TiO2 (Co-Mo-TiO2, Co-W-TiO2, Cu-Mo-TiO2, Cu-W-TiO2, Zn-Mo-TiO2, and Zn-W-TiO2) catalysts were synthesized by simple impregnation methods and tested for the photocatalytic degradation of 4-tert-butylphenol in water under UV (365 nm) light irradiation. The catalysts were characterized with various analytical methods. X-ray diffraction (XRD), Raman, Diffuse reflectance (DR) spectroscopies, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Energy dispersive spectroscopy (EDS) were applied to investigate the structure, optical properties, morphology, and elemental composition of the prepared catalysts. The XRD patterns revealed the presence of peaks corresponding to the WO3 in W-TiO2, Co-W-TiO2, Cu-W-TiO2, and Zn-W-TiO2. The co-doping of Cu and Mo to the TiO2 lattice was evidenced by the shift of XRD planes towards higher 2θ values, confirming the lattice distortion. Elemental mapping images confirmed the successful impregnation and uniform distribution of metal particles on the TiO2 surface. Compared to undoped TiO2, Mo-TiO2 and W-TiO2 exhibited a lower energy gap. Further incorporation of Mo-TiO2 with Co or Cu introduced slight changes in energy gap and light absorption characteristics, particularly visible light absorption. In addition, photoluminescence (PL) showed that Cu-Mo-TiO2 has a weaker PL intensity than undoped TiO2. Thus, Cu-Mo-TiO2 showed better catalytic activity than pure TiO2, achieving complete degradation of 4-tert-butylphenol under UV light irradiation after 60 min. The application of Cu-Mo-TiO2 under solar light conditions was also tested, and 70% of 4-tert-butylphenol degradation was achieved within 150 min.
Collapse
|
6
|
Floating Carbon-Doped TiO2 Photocatalyst with Metallic Underlayers Investigation for Polluted Water Treatment under Visible-Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal11121454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the current study, we analysed the influence of metallic underlayers on carbon-doped TiO2 films for RhB decomposition and Salmonella typhimurium inactivation under visible-light irradiation. All the experiments were divided into two parts. First, layered M/C-doped-TiO2 film structures (M = Ni, Nb, Cu) were prepared by magnetron sputtering technique on borosilicate glass substrates in the two-step deposition process. The influence of metal underlayer on the formation of the carbon-doped TiO2 films was characterised by X-ray diffractometer, scanning electron microscope, and atomic force microscope. The comparison between the visible-light assisted photocatalytic activity of M/C-doped TiO2 structures was performed by the photocatalytic bleaching tests of Rhodamine B dye aqueous solution. The best photocatalytic performance was observed for Ni/C-doped-TiO2 film combination. During the second part of the study, the Ni/C-doped-TiO2 film combination was deposited on high-density polyethylene beads which were selected as a floating substrate. The morphology and surface chemical analyses of the floating photocatalyst were performed. The viability and membrane permeability of Salmonella typhimurium were tested in cycling experiments under UV-B and visible-light irradiation. Three consecutive photocatalytic treatments of fresh bacteria suspensions with the same set of floating photocatalyst showed promising results, as after the third 1 h-long treatment bacteria viability was still reduced by 90% and 50% for UV-B and visible-light irradiation, respectively. The membrane permeability and ethidium fluorescence results suggest that Ni underlayer might have direct and indirect effect on the bacteria inactivation process. Additionally, relatively low loss of the photocatalyst efficiency suggests that floating C-doped TiO2 photocatalyst with the Ni underlayer might be seen as the possible solution for the used photocatalyst recovery issue.
Collapse
|