1
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
2
|
Boonmark S, Ponchai P, Adpakpang K, Wannapaiboon S, Thongratkaew S, Faungnawakij K, Bureekaew S. Valorizing natural-abundant glucose to lactic acid using a MOF-808 catalyst under green hydrothermal conditions. Chem Commun (Camb) 2024; 60:4890-4893. [PMID: 38546200 DOI: 10.1039/d4cc00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Highly robust Zr-based MOF-808, featuring Lewis acid Zr sites and coordinate hydroxide ions upon the removal of the monocarboxylate capping reagent, emerges as an efficient catalyst for the hydrothermal conversion of glucose into lactic acid. A remarkable 99% glucose conversion with an impressive 76.6% yield of lactic acid can be achieved. The large pore window of MOF-808 facilitates the diffusion of glucose to the active sites within the framework. The single-site attribute of the catalytic center enables a high selectivity of lactic acid over the competitive product, 5-(hydroxymethyl)furfural, under hydrothermal reaction conditions.
Collapse
Affiliation(s)
- Sininat Boonmark
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Panyapat Ponchai
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pahonyothin Rd., Klong Luang Pathumthani 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pahonyothin Rd., Klong Luang Pathumthani 12120, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
3
|
Boonyoung P, Thongratkaew S, Rungtaweevoranit B, Pengsawang A, Praserthdam P, Sanpitakseree C, Faungnawakij K. Formic acid as a sacrificial agent for byproduct suppression in glucose dehydration to 5-hydroxymethylfurfural using NaY zeolite catalyst. BIORESOURCE TECHNOLOGY 2024; 392:130010. [PMID: 37952589 DOI: 10.1016/j.biortech.2023.130010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Biomass-derived 5-hydroxymethylfurfural (HMF) holds potential for applications in green materials, but its conventional synthesis is hindered by undesired side reactions. This study presents a catalytic system that effectively suppresses the formation of byproducts, thus enhancing HMF yield. The system demonstrated synergistic effects between Lewis acid NaY zeolite and formic acid sacrificial agent for the production of HMF from glucose. The results indicate that formic acid reacts with reactive intermediates from glucose decomposition, preventing their interactions with other sugar-derived species in the dehydration path to HMF. Such effect originates from the neutral formic acid species rather than the dissociated acidic proton normally observed in Brønsted acid-catalyzed reactions. The NaY/formic acid catalysts in isopropanol/water achieved a 57% HMF yield, a significant improvement over 31% and 27% yields with NaY or formic acid alone, respectively. Moreover, performance of the spent catalysts was easily restored to the original state via a simple NaCl wash.
Collapse
Affiliation(s)
- Pawan Boonyoung
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Aniwat Pengsawang
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotitath Sanpitakseree
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
4
|
Shikh Zahari SMSN, Che Sam NFI, Elzaneen KMH, Ideris MS, Harun FW, Azman HH. Understanding the cation exchange affinity in modified-MMT catalysts for the conversion of glucose to lactic acid. RSC Adv 2023; 13:31263-31272. [PMID: 37901855 PMCID: PMC10603823 DOI: 10.1039/d3ra05071h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/07/2023] [Indexed: 10/31/2023] Open
Abstract
This study investigated the exchange affinity of Fe3+, Cu2+, and Zn2+ cations in sulfuric acid-purified montmorillonite (S-MMT) to enhance Lewis acid sites and subsequently improve the catalytic conversion of glucose to lactic acid. XRD analysis suggested the successful cation exchange process, leading to structural expansion of the resultant cation exchanged-MMTs (CE-MMTs). XRF and TGA indicated that Zn2+ had the highest exchange affinity, followed by Cu2+ and then Fe3+. This finding was further supported by the results of TPD-NH3 analysis and pyridine-adsorption test, which demonstrated that Zn-MMT had the highest total acid sites (TAS) and the ratio of Lewis acid-to-Brønsted acid surface site (LA/BA). These results indicated dominant presence of Lewis acid sites in Zn-MMT due to the higher amount of exchanged Zn2+ cations. Consistently, time-dependent catalytic studies conducted at 170 °C showed that a 7 h-reaction generated the highest lactic acid yield, with the catalytic performance increasing in the order of Fe-MMT < Cu-MMT < Zn-MMT. The study also observed the impact of adding alcohols as co-solvents with water at various ratios on the conversion of glucose to lactic acid catalysed by Zn-MMT. The addition of ethanol enhanced lactic acid yield, while methanol and propanol inhibited lactic acid formation. Notably, a water-to-ethanol ratio of 30 : 70 v/v% emerged as the optimal solvent condition, resulting in ca. 35 wt% higher lactic acid yield compared to using water alone. Overall, this study provides valuable insights into the cation exchange affinity of different cations in MMT catalysts and their relevance to the conversion of glucose to lactic acid. Furthermore, the incorporation of alcohol co-solvent presents a promising way of enhancing the catalytic activity of CE-MMTs.
Collapse
Affiliation(s)
- S M Shahrul Nizan Shikh Zahari
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
- Department of Chemical Engineering, South Kensington Campus, Imperial College London London SWZ 2AZ UK
| | - Nur Fatin Izzati Che Sam
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Kholoud M H Elzaneen
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Mahfuzah Samirah Ideris
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Farah Wahida Harun
- Industrial Chemical Technology Programme, Faculty of Science and Technology, Universiti Sains Islam Malaysia Bandar Baru Nilai 71800 Nilai Negeri Sembilan Malaysia
| | - Hazeeq Hazwan Azman
- Department of Science Biotechnology, Faculty of Engineering and Life Sciences, Universiti Selangor Jalan Timur Tambahan, 45600 Bestari Jaya Selangor Malaysia
| |
Collapse
|
5
|
Mao W, Hao J, Zeng L, Wang H, Xu H, Zhou J. Catalytic Conversion of Carbohydrates into 5-Hydroxymethylfurfural by Phosphotungstic Acid Encapsulated in MIL-101 (Cr, Sn) Catalyst in Deep Eutectic Solvents. Int J Mol Sci 2023; 24:11480. [PMID: 37511237 PMCID: PMC10380470 DOI: 10.3390/ijms241411480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Herein, we report the synthesis of bimetal-organic frameworks (BMOFs) with both Brønsted and Lewis acidities, in which phosphotungstic acid (PTA) was encapsulated in BMOFs. It is efficient in converting starch to 5-hydroxymethyl-furfural (HMF) in deep eutectic solvents (DESs) such as choline chloride and formic acid. The highest yield of HMF (37.94%) was obtained using P0.5/BMOFs1.0 to catalyze starch in a mixed solvent system comprising DESs and ethyl acetate (EAC) (v/v; 2:3) at 180 °C and a reaction time of 10 min. Employing a DES as a cocatalyst and solvent reduced the use of organic solvents. The catalyst showed adequate reusability, and the HMF yield only decreased by 2.88% after six cycles of reuse compared with that of the initial catalyst. This study demonstrates the application potential of BMOFs in the conversion of biomass to useful molecules with commercial and/or research value.
Collapse
Affiliation(s)
- Wei Mao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jiawen Hao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lingyu Zeng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hao Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hao Xu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jinghong Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Gorbachev I, Smirnov A, Ivanov GR, Venelinov T, Amova A, Datsuk E, Anisimkin V, Kuznetsova I, Kolesov V. Langmuir-Blodgett Films with Immobilized Glucose Oxidase Enzyme Molecules for Acoustic Glucose Sensor Application. SENSORS (BASEL, SWITZERLAND) 2023; 23:5290. [PMID: 37300021 PMCID: PMC10256062 DOI: 10.3390/s23115290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
In this work, a sensitive coating based on Langmuir-Blodgett (LB) films containing monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an immobilized glucose oxidase (GOx) enzyme was created. The immobilization of the enzyme in the LB film occurred during the formation of the monolayer. The effect of the immobilization of GOx enzyme molecules on the surface properties of a Langmuir DPPE monolayer was investigated. The sensory properties of the resulting LB DPPE film with an immobilized GOx enzyme in a glucose solution of various concentrations were studied. It has shown that the immobilization of GOx enzyme molecules into the LB DPPE film leads to a rising LB film conductivity with an increasing glucose concentration. Such an effect made it possible to conclude that acoustic methods can be used to determine the concentration of glucose molecules in an aqueous solution. It was found that for an aqueous glucose solution in the concentration range from 0 to 0.8 mg/mL the phase response of the acoustic mode at a frequency of 42.7 MHz has a linear form, and its maximum change is 55°. The maximum change in the insertion loss for this mode was 18 dB for a glucose concentration in the working solution of 0.4 mg/mL. The range of glucose concentrations measured using this method, from 0 to 0.9 mg/mL, corresponds to the corresponding range in the blood. The possibility of changing the conductivity range of a glucose solution depending on the concentration of the GOx enzyme in the LB film will make it possible to develop glucose sensors for higher concentrations. Such technological sensors would be in demand in the food and pharmaceutical industries. The developed technology can become the basis for creating a new generation of acoustoelectronic biosensors in the case of using other enzymatic reactions.
Collapse
Affiliation(s)
- Ilya Gorbachev
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Andrey Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - George R. Ivanov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Tony Venelinov
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Anna Amova
- University Laboratory “Nanoscience and Nanotechnology”, University of Architecture, Civil Engineering and Geodesy, 1164 Sofia, Bulgaria; (G.R.I.); (T.V.); (A.A.)
| | - Elizaveta Datsuk
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Vladimir Anisimkin
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Iren Kuznetsova
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| | - Vladimir Kolesov
- Kotelnikov Institute of Radio Engineering and Electronics of RAS, 125009 Moscow, Russia; (I.G.); (A.S.); (E.D.); (V.A.); (V.K.)
| |
Collapse
|
7
|
Conversion of Glucose to 5-Hydroxymethylfurfural Using Consortium Catalyst in a Biphasic System and Mechanistic Insights. Catalysts 2023. [DOI: 10.3390/catal13030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
We found an effective catalytic consortium capable of converting glucose to 5-hydroxymethylfurfural (HMF) in high yields (50%). The reaction consists of a consortium of a Lewis acid (NbCl5) and a Brønsted acid (p-sulfonic acid calix[4]arene (CX4SO3H)), in a microwave-assisted reactor and in a biphasic system. The best result for the conversion of glucose to HMF (yield of 50%) was obtained with CX4SO3H/NbCl5 (5 wt%/7.5 wt%), using water/NaCl and MIBK (1:3), at 150 °C, for 17.5 min. The consortium catalyst recycling was tested, allowing its reuse for up to seven times, while maintaining the HMF yield constant. Additionally, it proposed a catalytic cycle by converting glucose to HMF, highlighting the following two key points: the isomerization of glucose into fructose, in the presence of Lewis acid (NbCl5), and the conversion of fructose into HMF, in the presence of CX4SO3H/NbCl5. A mechanism for the conversion of glucose to HMF was proposed and validated.
Collapse
|
8
|
Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023. [DOI: 10.3390/catal13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In recent years, the adoption of sustainable alternatives has become a powerful tool for replacing petroleum-based polymers. As a biodegradable alternative to petroleum-derived plastics, bioplastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. Meanwhile, their biodegradation is highly dependent on their environment. The leakage of bioplastics into the environment and their long degradation time frame during waste management processes are becoming major concerns that need further investigation. This review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments, and examines the biological and environmental factors involved in the process. Furthermore, the review highlights the need for further research on the long-term fate of bioplastics in natural and industrial environments. The roles played by enzymes as biocatalysts and metal compounds as catalysts through composting can help to achieve a sustainable approach to the biodegradation of biopolymers. The knowledge gained in this study will also contribute to the development of policies and assessments for bioplastic waste, as well as provide direction for future bioplastics research and development.
Collapse
|
9
|
An Integrated Process for D-Sorbitol Production over NiO/TiO2 Supported Ru Nanocatalyst: A Greener Approach. Top Catal 2022. [DOI: 10.1007/s11244-022-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
11
|
Acid-Modified Clays for the Catalytic Obtention of 5-Hydroxymethylfurfural from Glucose. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-hydroxymethylfurfural (5-HMF) is an important platform molecule for the synthesis of high-added value products. Several synthesized clay materials, such as mesoporous hectorite and fluorohectorite, in addition to commercial montmorillonite K-10, have been acid modified by different methodologies to be applied as catalysts for the obtention of 5-HMF from glucose. The effects of the Brønsted and/or Lewis acidity, the reaction temperature and time, and the catalyst/glucose ratio on the conversion but especially on the selectivity to 5-HMF have been studied. By comparing the synthesized clays, the best selectivity to 5-HMF (36%) was obtained at 140 °C for 4 h with H-fluorohectorite because of the presence of strong Brønsted acid sites, although its conversion was the lowest (33%) due to its low amounts of Lewis acid sites. Different strategies, such as physical mixtures of montmorillonite K10, which contains high amounts of Lewis acid centers, with Amberlyst-15, which has high amounts of Brønsted acid sites, or the incorporation of rhenium compounds, were carried out. The best selectivity to 5-HMF (62%) was achieved with a mixture of 44 wt % Amberlyst-15 and 56 wt % of montmorillonite K10 for a 56% of conversion at 140 °C for 4 h. This proportion optimized the amount of Brønsted and Lewis acid sites in the catalyst under these reaction conditions.
Collapse
|
12
|
Abstract
Beta zeolite modified with Sn in the framework (Sn-Beta) was synthesized and introduced as a heterogeneous catalyst for Baeyer–Villiger oxidations about twenty years ago. Since then, both syntheses strategies, characterization and understanding as well as applications with the material have developed significantly. Remarkably, Sn-Beta zeolite has been discovered to exhibit unprecedented high catalytic efficiency for the transformation of glucose to fructose (i.e., aldoses to ketoses) and lactic acid derivatives in both aqueous and alcoholic media, which has inspired an extensive interest to develop more facile and scalable syntheses routes and applications for sugars transformations. This review survey the progress made on both syntheses approaches of Sn-Beta and applications of the material within catalyzed transformations of sugar, including bottom-up and top-down syntheses and catalyzed isomerization, dehydration, and fragmentation of sugars.
Collapse
|
13
|
Singh M, Pandey N, Negi P, Larroche C, Mishra BB. Solvothermal conversion of spent aromatic waste to ethyl glucosides. CHEMOSPHERE 2022; 292:133428. [PMID: 34968518 DOI: 10.1016/j.chemosphere.2021.133428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
On-farm extraction of commercially important essential oil from aromatic crops generates huge spent aromatic waste. This massive waste is often disposed in the unregulated landfills or burned in the open air to vacate the fields. Hence, a new method for processing of aromatic spent waste has been developed to obtain platform chemicals, such as, xylose and ethyl glucosides. The thermochemical liquefaction of acid pre-treated palmarosa (cymbopogon martini) biomass furnished a mixture of ethyl glucopyranosides in good yield (∼17 wt% relative to biomass) and selectivity (∼77%) by heating with p-cymen-2-sulphonic acid (p-CSA) in the presence of ethanol as a solvent. The detection, quantification and isolation of ethyl glucosides may provide a new application of spent aromatic biomass for use as a feed stock in the production of value added chemicals.
Collapse
Affiliation(s)
- Mangat Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Nishant Pandey
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Pooja Negi
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, 140306, Punjab, India; Department of Chemistry, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Christian Larroche
- Polytech Clermont Ferrand, University Clermont Auvergne, Clermont Ferrand, France
| | - Bhuwan B Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector 81 (Knowledge City), S.A.S. Nagar, Mohali, 140306, Punjab, India.
| |
Collapse
|