1
|
Feyie E, Zereffa EA, Tadesse A, Goddati M, Noh D, Oh E, Tufa LT, Lee J. An Efficient p-n Heterojunction Copper Tin Sulfide/g-C 3N 4 Nanocomposite for Methyl Orange Photodegradation. ACS OMEGA 2024; 9:28463-28475. [PMID: 38973891 PMCID: PMC11223204 DOI: 10.1021/acsomega.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024]
Abstract
The discharge of toxic dye effluents from industry is a major concern for environmental pollution and toxicity. These toxic dyes can be efficiently removed from waste streams using a photocatalysis process involving visible light. Due to its simple synthesis procedure, inexpensive precursor, and robust stability, graphitic carbon nitride (g-C3N4, or CN) has been used as a visible light responsive catalyst for the degradation of dyes with mediocre performance because it is limited by its low visible light harvesting capability due to its wide bandgap and fast carrier recombination rate. To overcome these limitations and enhance the performance of g-C3N4, it was coupled with a narrow bandgap copper tin sulfide (CTS) semiconductor to form a p-n heterojunction. CTS and g-C3N4 were selected due to their good stability, low toxicity, ease of synthesis, layered sheet/plate-like morphology, and relatively abundant precursors. Accordingly, a series of copper tin sulfide/graphitic carbon nitride nanocomposites (CTS/g-C3N4) with varying CTS contents were successfully synthesized via a simple two-step process involving thermal pyrolysis and coprecipitation for visible-light-induced photocatalytic degradation of methyl orange (MO) dye. The photocatalytic activity results showed that the 50%(wt/wt) CTS/g-C3N4 composite displayed a remarkable degradation efficiency of 95.6% for MO dye under visible light illumination for 120 min, which is higher than that of either pristine CTS or g-C3N4. The improved performance is attributed to the extended light absorption range (due to the optimized bandgap), effective suppression of photoinduced electron-hole recombination, and improved charge transfer that arose from the formation of a p-n heterojunction, as evidenced by electrochemical impedance spectroscopy (EIS), photocurrent, and photoluminescence results. Moreover, the results of the reusability study showed that the composite has excellent stability, indicating its potential for the degradation of MO and other toxic organic dyes from waste streams.
Collapse
Affiliation(s)
- Endale
Kebede Feyie
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Enyew Amare Zereffa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Aschalew Tadesse
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
| | - Mahendra Goddati
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Eunsoon Oh
- Department
of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute
of Quantum Systems (IQS), Chungnam National
University,99 Daehak-ro Yuseong-gu, Daejeon 34134, Korea
| | - Lemma Teshome Tufa
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box: 1888, Adama 1888, Ethiopia
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
- Research
Institute of Materials Chemistry, Chungnam
National University, Daejeon 34134, Republic
of Korea
| |
Collapse
|
2
|
Hojamberdiev M, Vargas R, Madriz L, Kadirova ZC, Yubuta K, Zhang F, Teshima K, Lerch M. Untangling the Effect of Carbonaceous Materials on the Photoelectrochemical Performance of BaTaO 2N. ACS OMEGA 2024; 9:7022-7033. [PMID: 38371832 PMCID: PMC10870353 DOI: 10.1021/acsomega.3c08894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
The water oxidation reaction is a rate-determining step in solar water splitting. The number of surviving photoexcited holes is one of the most influencing factors affecting the photoelectrochemical water oxidation efficiency of photocatalysts. The solar-to-hydrogen energy conversion efficiency of BaTaO2N is still far below the benchmark efficiency set for practical applications, notwithstanding its potential as a 600 nm-class photocatalyst in solar water splitting. To improve its efficiency in photoelectrochemical water splitting, this study offers a straightforward route to develop photocatalytic materials based on the combination of BaTaO2N and carbonaceous materials with different dimensions. The impact of diverse carbonaceous materials, such as fullerene, g-C3N4, graphene, carbon nanohorns, and carbon nanotubes, on the photoelectrochemical behavior of BaTaO2N has been examined. Notably, the use of graphene and g-C3N4 remarkably improves the photoelectrochemical performance of the composite photocatalysts through a higher photocurrent and acting as electron reservoirs. Consequently, a marked reduction in recombination rates, even at low overpotentials, leads to a higher accumulation of photoexcited holes, resulting in 2.6- and 1.7-fold increased BaTaO2N photocurrent densities using graphene and g-C3N4, respectively. The observed trends in the dark for the oxygen reduction reaction (ORR) potential align with the increase in the photocurrent density, revealing a good correlation between opposite phenomena. Importantly, the enhancement observed implies an underlying accumulation phenomenon. The verification of this concept lies in the evidence provided by oxygen reduction and is in line with photoredox flux matching during photocatalysis. This research underscores the intricate interplay between carbonaceous materials and oxynitride photocatalysts, offering a strategic approach to enhancing various photocatalytic capabilities.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ronald Vargas
- Instituto
Tecnológico de Chascomús (INTECH), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
- Escuela
de Bio y Nanotecnologías, Universidad
Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
| | - Lorean Madriz
- Instituto
Tecnológico de Chascomús (INTECH), Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
- Escuela
de Bio y Nanotecnologías, Universidad
Nacional de San Martín (UNSAM), Avenida Intendente Marino, Km 8,2, B7130IWA Chascomús, Provincia de Buenos Aires, Argentina
| | - Zukhra C. Kadirova
- Uzbekistan–Japan
Innovation Center of Youth, University Street 2B, 100095 Tashkent, Uzbekistan
| | - Kunio Yubuta
- Department
of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Fuxiang Zhang
- State
Key
Laboratory of Catalysis, Dalian National Laboratory for Clean Energy,
iChEM, Dalian Institute of Chemical Physics,
Chinese Academy of Sciences, Dalian 116023, China
| | - Katsuya Teshima
- Department
of Materials Chemistry, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Research
Initiative for Supra-Materials, Shinshu
University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Martin Lerch
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
3
|
Oyewo OA, Ramaila S. Adsorption and photocatalytic removal of murexide using ZnO/rGO and ZnO/g-C3N4 composites. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Arafa M, Abdelmonem Y, Madkour M. Visible active narrow/narrow band gap CuO/Cu 2SnS 3 nanoheterostructures as efficient nanophotocatalysts. J Chem Phys 2023; 158:064703. [PMID: 36792501 DOI: 10.1063/5.0135211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Binary metal oxide/ternary metal sulphide based nanoheterostructures, such as CuO/Cu2SnS3, were prepared via a modified hydrothermal route. The prepared nanoheterostructures were characterized using scanning electron microscopy, x-ray powder diffractometer, XPS, ultraviolet-visible spectroscopy, isoelectric point, and Brunauer-Emmett-Teller techniques. The XPS results revealed the successful incorporation of Cu+/Cu2+ with different ratios. The prepared heterostructures were tested as solar active photocatalysts for Methylene Blue (MB) photodegradation. The CuO/Cu2SnS3 (20% Cu2SnS3/80% CuO) photocatalytic results exhibited a high photodegradation efficiency (90%) after 60 min. In addition, the photonic efficiency values (ζ) were calculated to be 15.9%, 44%, and 61.4% for CuO, Cu2SnS3, and CuO/Cu2SnS3 nanoheterostructures, respectively. In addition, the reactive oxidative species were detected by the trapping experiments to get a clear insight about the photocatalytic reactivity factors. Total organic carbon (TOC) was conducted to confirm the safe photodegradation of MB dye without the formation of colorless hazardous (95.5% TOC removal). Based on the electronic band structure, the mechanism of photodegradation was investigated. The currently investigated heterostructure system is narrow/narrow bandgap, which fulfills the two contradictory conditions in terms of high solar photocatalytic activity and overcomes the rapid recombination process.
Collapse
Affiliation(s)
- Mona Arafa
- Chemistry Department, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Egypt
| | - Yasser Abdelmonem
- Chemistry Department, Faculty of Science, Menoufia University, 32511 Shebin El-Kom, Egypt
| | - Metwally Madkour
- Chemistry Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| |
Collapse
|
5
|
Glažar D, Jerman I, Tomšič B, Chouhan RS, Simončič B. Emerging and Promising Multifunctional Nanomaterial for Textile Application Based on Graphitic Carbon Nitride Heterostructure Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:408. [PMID: 36770371 PMCID: PMC9920882 DOI: 10.3390/nano13030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Nanocomposites constructed with heterostructures of graphitic carbon nitride (g-C3N4), silver (Ag), and titanium dioxide (TiO2) have emerged as promising nanomaterials for various environmental, energy, and clinical applications. In the field of textiles, Ag and TiO2 are already recognized as essential nanomaterials for the chemical surface and bulk modification of various textile materials, but the application of composites with g-C3N4 as a green and visible-light-active photocatalyst has not yet been fully established. This review provides an overview of the construction of Ag/g-C3N4, TiO2/g-C3N4, and Ag/TiO2/g-C3N4 heterostructures; the mechanisms of their photocatalytic activity; and the application of photocatalytic textile platforms in the photochemical activation of organic synthesis, energy generation, and the removal of various organic pollutants from water. Future prospects for the functionalization of textiles using g-C3N4-containing heterostructures with Ag and TiO2 are highlighted.
Collapse
Affiliation(s)
- Dominika Glažar
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva Cesta 12, 1000 Ljubljana, Slovenia
| | - Ivan Jerman
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Brigita Tomšič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva Cesta 12, 1000 Ljubljana, Slovenia
| | - Raghuraj Singh Chouhan
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova Cesta 3, 1000 Ljubljana, Slovenia
| | - Barbara Simončič
- Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva Cesta 12, 1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Ben Smida Y, Oyewo O, Ramaila S, Mavuru L, Marzouki R, Onwudiwe DC, Hamzaoui AH. Synthesis of Cu9S5, SnS2, and Cu2SnS3 Nanoparticles from Precursor Complexes and Their Photodegradation Activities on Methyl Orange. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02476-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Tian Y, Zhang J, Yang X, Jia D. Facile One‐pot Syntheses and Enhanced Photocatalytic Performances of Ternary Metal Sulfide Composite g‐C3N4/Cu3SnS4. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yiming Tian
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jiahua Zhang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Xiao Yang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dingxian Jia
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No. 199 Renai Road 215123 Suzhou CHINA
| |
Collapse
|