1
|
Afaq M, Shahid M, Ahmad I, Yousaf S, Alazmi A, Mahmoud MHH, El Azab IH, Warsi MF. Large-scale sonochemical fabrication of a Co 3O 4-CoFe 2O 4@MWCNT bifunctional electrocatalyst for enhanced OER/HER performances. RSC Adv 2023; 13:19046-19057. [PMID: 37362336 PMCID: PMC10286564 DOI: 10.1039/d3ra03117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Herein, we have prepared a mixed-phase Co3O4-CoFe2O4@MWCNT nanocomposite through a cheap, large-scale, and facile ultrasonication route followed by annealing. The structural, morphological, and functional group analyses of the synthesized catalysts were performed by employing various characterization approaches such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The resultant samples were tested for bifunctional electrocatalytic activity through various electrochemical techniques: cyclic voltammetry (CV), linear sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS). The prepared Co3O4-CoFe2O4@MWCNT nanocomposite achieved a very high current density of 100 mA cm-2 at a lower (290 mV and 342 mV) overpotential (vs. RHE) and a smaller (166 mV dec-1 and 138 mV dec-1) Tafel slope in the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively, compared to Co3O4-CoFe2O4. The excellent electrochemical activity of the as-prepared electrocatalyst was attributed to the uniform incorporation of Co3O4-CoFe2O4 over MWCNTs which provides high redox active sites, a greater surface area, better conductivity, and faster charge mobility. Furthermore, the enhanced electrochemical active surface, low charge-transfer resistance (Rct), and higher exchange current density (J0) of the Co3O4-CoFe2O4@MWCNT ternary composite are attributed to its superior behavior as a bifunctional electrocatalyst. Conclusively, this study demonstrates a novel and large-scale synthesis approach for bifunctional electrocatalysts with a high aspect ratio and abundance of active sites for high-potential energy applications.
Collapse
Affiliation(s)
- Muhammad Afaq
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Muhammad Shahid
- Department of Chemistry, College of Science, University of Hafr Al Batin P.O. Box 1803 Hafr Al Batin Saudi Arabia
| | - Iqbal Ahmad
- Department of Chemistry, Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Sheraz Yousaf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Amira Alazmi
- Department of Science and Technology, University Colleges at Nairiyah, University of Hafr Al Batin Nairiyah 31981 Saudi Arabia
| | - M H H Mahmoud
- Department of Chemistry, College of Science, Taif University Taif 21944 Saudi Arabia
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| |
Collapse
|
2
|
Panda A, Cho HK, Kim H. A Green Synthesis of CoFe 2O 4 Decorated ZIF-8 Composite for Electrochemical Oxygen Evolution. Int J Mol Sci 2023; 24:ijms24119585. [PMID: 37298534 DOI: 10.3390/ijms24119585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Low-cost, sustainable hydrogen production requires noble metal-free electrocatalysts for water splitting. In this study, we prepared zeolitic imidazolate frameworks (ZIF) decorated with CoFe2O4 spinel nanoparticles as active catalysts for oxygen evolution reaction (OER). The CoFe2O4 nanoparticles were synthesized by converting agricultural bio-waste (potato peel extract) into economically valuable electrode materials. The biogenic CoFe2O4 composite showed an overpotential of 370 mV at a current density of 10 mA cm-2 and a low Tafel slope of 283 mV dec-1, whereas the ZIF@CoFe2O4 composite prepared using an in situ hydrothermal method showed an overpotential of 105 mV at 10 mA cm-2 and a low Tafel slope of 43 mV dec-1 in a 1 M KOH medium. The results demonstrated an exciting prospect of high-performance noble metal-free electrocatalysts for low-cost, high-efficiency, and sustainable hydrogen production.
Collapse
Affiliation(s)
- Atanu Panda
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hang-Kyu Cho
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Bianchetti E, Perilli D, Di Valentin C. Improving the Oxygen Evolution Reaction on Fe 3O 4(001) with Single-Atom Catalysts. ACS Catal 2023; 13:4811-4823. [PMID: 37066046 PMCID: PMC10088028 DOI: 10.1021/acscatal.3c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2023] [Indexed: 04/18/2023]
Abstract
Doping magnetite surfaces with transition-metal atoms is a promising strategy to improve the catalytic performance toward the oxygen evolution reaction (OER), which governs the overall efficiency of water electrolysis and hydrogen production. In this work, we investigated the Fe3O4(001) surface as a support material for single-atom catalysts of the OER. First, we prepared and optimized models of inexpensive and abundant transition-metal atoms, such as Ti, Co, Ni, and Cu, trapped in various configurations on the Fe3O4(001) surface. Then, we studied their structural, electronic, and magnetic properties through HSE06 hybrid functional calculations. As a further step, we investigated the performance of these model electrocatalysts toward the OER, considering different possible mechanisms, in comparison with the pristine magnetite surface, on the basis of the computational hydrogen electrode model developed by Nørskov and co-workers. Cobalt-doped systems were found to be the most promising electrocatalytic systems among those considered in this work. Overpotential values (∼0.35 V) were in the range of those experimentally reported for mixed Co/Fe oxide (0.2-0.5 V).
Collapse
Affiliation(s)
- Enrico Bianchetti
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Daniele Perilli
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
| | - Cristiana Di Valentin
- Dipartimento
di Scienza dei Materiali, Università
di Milano Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy
- BioNanoMedicine
Center NANOMIB, Università di Milano
Bicocca, Via Raoul Follereau
3, 20900 Monza, Italy
| |
Collapse
|
4
|
Einert M, Waheed A, Lauterbach S, Mellin M, Rohnke M, Wagner LQ, Gallenberger J, Tian C, Smarsly BM, Jaegermann W, Hess F, Schlaad H, Hofmann JP. Sol-Gel-Derived Ordered Mesoporous High Entropy Spinel Ferrites and Assessment of Their Photoelectrochemical and Electrocatalytic Water Splitting Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205412. [PMID: 36653934 DOI: 10.1002/smll.202205412] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The novel material class of high entropy oxides with their unique and unexpected physicochemical properties is a candidate for energy applications. Herein, it is reported for the first time about the physico- and (photo-) electrochemical properties of ordered mesoporous (CoNiCuZnMg)Fe2 O4 thin films synthesized by a soft-templating and dip-coating approach. The A-site high entropy ferrites (HEF) are composed of periodically ordered mesopores building a highly accessible inorganic nanoarchitecture with large specific surface areas. The mesoporous spinel HEF thin films are found to be phase-pure and crack-free on the meso- and macroscale. The formation of the spinel structure hosting six distinct cations is verified by X-ray-based characterization techniques. Photoelectron spectroscopy gives insight into the chemical state of the implemented transition metals supporting the structural characterization data. Applied as photoanode for photoelectrochemical water splitting, the HEFs are photostable over several hours but show only low photoconductivity owing to fast surface recombination, as evidenced by intensity-modulated photocurrent spectroscopy. When applied as oxygen evolution reaction electrocatalyst, the HEF thin films possess overpotentials of 420 mV at 10 mA cm-2 in 1 m KOH. The results imply that the increase of the compositional disorder enhances the electronic transport properties, which are beneficial for both energy applications.
Collapse
Affiliation(s)
- Marcus Einert
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Arslan Waheed
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287, Darmstadt, Germany
| | - Maximilian Mellin
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Marcus Rohnke
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Lysander Q Wagner
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Julia Gallenberger
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Bernd M Smarsly
- Center for Materials Research, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
- Institute for Physical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Wolfram Jaegermann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Franziska Hess
- Institute of Chemistry, Technical University Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| |
Collapse
|
5
|
Avcı ÖN, Sementa L, Fortunelli A. Mechanisms of the Oxygen Evolution Reaction on NiFe 2O 4 and CoFe 2O 4 Inverse-Spinel Oxides. ACS Catal 2022; 12:9058-9073. [PMID: 35966604 PMCID: PMC9361295 DOI: 10.1021/acscatal.2c01534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Indexed: 01/12/2023]
Abstract
![]()
Spinel ferrites, especially Nickel ferrite, NiFe2O4, and Cobalt ferrite, CoFe2O4, are efficient
and promising anode catalyst materials in the field of electrochemical
water splitting. Using density functional theory, we extensively investigate
and quantitatively model the mechanism and energetics of the oxygen
evolution reaction (OER) on the (001) facets of their inverse-spinel
structure, thought as the most abundant orientations under reaction
conditions. We catalogue a wide set of intermediates and mechanistic
pathways, including the lattice oxygen mechanism (LOM) and adsorbate
evolution mechanism (AEM), along with critical (rate-determining)
O–O bond formation barriers and transition-state structures.
In the case of NiFe2O4, we predict a Fe-site-assisted
LOM pathway as the preferred OER mechanism, with a barrier (ΔG⧧) of 0.84 eV at U =
1.63 V versus SHE and a turnover frequency (TOF) of 0.26 s–1 at 0.40 V overpotential. In the case of CoFe2O4, we find that a Fe-site-assisted LOM pathway (ΔG⧧ = 0.79 eV at U = 1.63 V vs SHE, TOF = 1.81 s–1 at 0.40 V overpotential)
and a Co-site-assisted AEM pathway (ΔG⧧ = 0.79 eV at bias > U = 1.34 V vs SHE, TOF = 1.81 s–1 at bias >1.34
V)
could both play a role, suggesting a coexistence of active sites,
in keeping with experimental observations. The computationally predicted
turnover frequencies exhibit a fair agreement with experimentally
reported data and suggest CoFe2O4 as a more
promising OER catalyst than NiFe2O4 in the pristine case, especially for the Co-site-assisted OER pathway,
and may offer a basis for further progress and optimization.
Collapse
Affiliation(s)
- Öyküm N. Avcı
- CNR-ICCOM, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, Pisa 56124, Italy
- Department of Chemistry and Industrial Chemistry, DSCM, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Luca Sementa
- CNR- IPCF, Istituto per i Processi Chimico-Fisici, Via G. Moruzzi 1, Pisa 56124, Italy
| | | |
Collapse
|