1
|
Kumar Manna B, Samanta R, Kumar Trivedi R, Chakraborty B, Barman S. Hydrogen spillover inspired bifunctional Platinum/Rhodium Oxide-Nitrogen-Doped carbon composite for enhanced hydrogen evolution and oxidation reactions in base. J Colloid Interface Sci 2024; 670:258-271. [PMID: 38763022 DOI: 10.1016/j.jcis.2024.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The poor activity of Pt-based-catalysts for alkaline hydrogen oxidation/evolution reaction (HOR/HER) encourages scientific society to design an effective electrocatalyst to develop alkaline fuel cells/electrolyzers. Herein, platinum/rhodium oxide-nitrogen-doped carbon (Pt/Rh2O3-CNx) composite is prepared for alkaline HER and HOR inspired by hydrogen spillover. The HER performance of Pt/Rh2O3-CNx is ∼ 6 times higher than Pt/C. In HOR, Pt/Rh2O3-CNx possesses an exchange current density of 657.60 mA/mgmetal, which is ∼ 3.4 times higher than Pt/C. Hydrogen and hydroxyl binding energy (HBE and OHBE) contribute equally to alkaline HOR/HER. The experimental and theoretical evidence suggests that the enhanced HER and HOR activity of Pt/Rh2O3-CNx may be due to hydrogen spillover from Pt to Rh2O3. Small work function difference [0.08 eV] of the system suggested hydrogen-spillover is feasible, which has been justified by reaction-free energy calculations. We proposed that the dissociation of hydrogen (H2) and water (H2O) occurs at Pt to form Pt-adsorbed hydrogen species (Pt-Had). Then, some Had moves to Rh2O3 through hydrogen spillover and reacts with neighboring Had or adsorbed hydroxyl species (OHad) to form H2 or H2O, which enhances the HER and HOR activity, respectively. The role of water-metal-hydroxyl species in the electrical double layer was also demonstrated on alkaline HOR/HER. This work may help to design the hydrogen-spillover-based catalysts for several renewable energy technologies.
Collapse
Affiliation(s)
- Biplab Kumar Manna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajib Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ravi Kumar Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India; Centre for High Energy Physics, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Brahmananda Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India; High Pressure & amp, Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.
| | - Sudip Barman
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Orissa 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Smiljanić M, Srejić I, Georgijević JP, Maksić A, Bele M, Hodnik N. Recent progress in the development of advanced support materials for electrocatalysis. Front Chem 2023; 11:1304063. [PMID: 38025069 PMCID: PMC10665529 DOI: 10.3389/fchem.2023.1304063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Electrocatalytic materials are pivotal for clean chemical production and energy conversion in devices like electrolyzers and fuel cells. These materials usually consist of metallic nanoparticles which serve as active reaction sites, and support materials which provide high surface area, conductivity and stability. When designing novel electrocatalytic composites, the focus is often on the metallic sites, however, the significance of the support should not be overlooked. Carbon materials, valued for their conductivity and large surface area, are commonly used as support in benchmark electrocatalysts. However, using alternative support materials instead of carbon can be beneficial in certain cases. In this minireview, we summarize recent advancements and key directions in developing novel supports for electrocatalysis, encompassing both carbon and non-carbon materials.
Collapse
Affiliation(s)
- M. Smiljanić
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - I. Srejić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - J. P. Georgijević
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - A. Maksić
- Department of Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
| | - M. Bele
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| | - N. Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
3
|
From PET Bottles Waste to N-Doped Graphene as Sustainable Electrocatalyst Support for Direct Liquid Fuel Cells. Catalysts 2023. [DOI: 10.3390/catal13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2023] Open
Abstract
Direct liquid fuel cells represent one of the most rapidly emerging energy conversion devices. The main challenge in developing fuel cell devices is finding low-cost and highly active catalysts. In this work, PET bottle waste was transformed into nitrogen-doped graphene (NG) as valuable catalyst support. NG was prepared by a one-pot thermal decomposition process of mineral water waste bottles with urea at 800 °C. Then, NG/Pt electrocatalysts with Pt loadings as low as 0.9 wt.% and 1.8 wt.% were prepared via a simple reduction method in aqueous solution at room temperature. The physical and electrochemical properties of the NG/Pt electrocatalysts are characterized and evaluated for application in direct borohydride peroxide fuel cells (DBPFCs). The results show that NG/Pt catalysts display catalytic activity for borohydride oxidation reaction, particularly the NG/Pt_1, with a number of exchanged electrons of 2.7. Using NG/Pt composite in fuel cells is anticipated to lower prices and boost the usage of electrochemical energy devices. A DBPFC fuel cell using NG/Pt_1 catalyst (1.8 wt.% Pt) in the anode achieved a power density of 75 mW cm−2 at 45 °C. The exceptional performance and economic viability become even more evident when expressed as mass-specific power density, reaching a value as high as 15.8 W mgPt−1.
Collapse
|
4
|
Zhang C, Xu Z, Han N, Tian Y, Kallio T, Yu C, Jiang L. Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer. SCIENCE ADVANCES 2023; 9:eadd6978. [PMID: 36652519 PMCID: PMC9848275 DOI: 10.1126/sciadv.add6978] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Hydrogen evolution reaction (HER), as an effective method to produce green hydrogen, is greatly impeded by inefficient mass transfer, i.e., bubble adhesion on electrode, bubble dispersion in the vicinity of electrode, and poor dissolved H2 diffusion, which results in blocked electrocatalytic area and large H2 concentration overpotential. Here, we report a superaerophilic/superaerophobic (SAL/SAB) cooperative electrode to efficiently promote bubble transfer by asymmetric Laplace pressure and accelerate dissolved H2 diffusion through reducing diffusion distance. Benefiting from the enhanced mass transfer, the overpotential for the SAL/SAB cooperative electrode at -10 mA cm-2 is only -19 mV, compared to -61 mV on the flat Pt electrode. By optimizing H2SO4 concentration, the SAL/SAB cooperative electrode can achieve ultrahigh current density (-1867 mA cm-2) at an overpotential of -500 mV. We can envision that the SAL/SAB cooperative strategy is an effective method to improve HER efficiency and stimulate the understanding of various gas-involved processes.
Collapse
Affiliation(s)
- Chunhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Nana Han
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tanja Kallio
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Cunming Yu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Corresponding author. (C.Y.); (L.J.)
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Corresponding author. (C.Y.); (L.J.)
| |
Collapse
|
5
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
6
|
Improved Oxygen Reduction on GC-Supported Large-Sized Pt Nanoparticles by the Addition of Pd. Catalysts 2022. [DOI: 10.3390/catal12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
Abstract
PdPt bimetallic nanoparticles on carbon-based supports functioning as advanced electrode materials have attracted attention due to their low content of noble metals and high catalytic activity for fuel cell reactions. Glassy carbon (GC)-supported Pt and PdPt nanoparticles, as promising catalysts for the oxygen reduction reaction (ORR), were prepared by the electrochemical deposition of Pt and the subsequent spontaneous deposition of Pd. The obtained electrodes were examined using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), and electroanalytical techniques. An XPS analysis of the PdPt/GC with the highest ORR performance revealed that the stoichiometric ratio of Pd: Pt was 1:2, and that both Pt and Pd were partially oxidized. AFM images of PdPt2/GC showed the full coverage of GC with PdPt nanoparticles with sizes from 100–300 nm. The ORR activity of PdPt2/GC in an acid solution approached that of polycrystalline Pt (E1/2 = 0.825 V vs. RHE), while exceeding it in an alkaline solution (E1/2 = 0.841 V vs. RHE). The origin of the improved ORR on PdPt2/GC in an alkaline solution is ascribed to the presence of a higher amount of adsorbed OH species originating from both PtOH and PdOH that facilitated the 4e-reaction pathway.
Collapse
|
7
|
Shahdeo D, Chauhan N, Majumdar A, Ghosh A, Gandhi S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS APPLIED BIO MATERIALS 2022; 5:3563-3572. [PMID: 35775242 PMCID: PMC9274923 DOI: 10.1021/acsabm.2c00503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag). The in-house developed antispike S1 antibody (S1-Ab) was covalently immobilized on the surface of a carboxy functionalized graphene channel using carbodiimide chemistry. Ultraviolet-visible spectroscopy, Fourier-Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Optical Microscopy, Raman Spectroscopy, Scanning Electron Microscopy (SEM), Enzyme-Linked Immunosorbent Assays (ELISA), and device stability studies were conducted to characterize the bioconjugation and fabrication process of Gr-FET. In addition, the electrical response of the device was evaluated by monitoring the change in resistance caused by Ag-Ab interaction in real time. For S1-Ag, our Gr-FET devices were tested in the range of 1 fM to 1 μM with a limit of detection of 10 fM in the standard buffer. The fabricated devices are highly sensitive, specific, and capable of detecting low levels of S1-Ag.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Neha Chauhan
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- The
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Majumdar
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
| | - Arindam Ghosh
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- Centre
for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sonu Gandhi
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| |
Collapse
|
8
|
Li H, Xie B, Hu C, Liu M, Xiao D. Reduced graphene oxide-supported CuO nanoparticles with synergistically enhanced electrocatalytic activity for nitric oxide sensing. Analyst 2022; 147:5187-5193. [DOI: 10.1039/d2an01134d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
This work reports a NO electrochemical sensor based on rGO/CuO composites with excellent electrochemical performance.
Collapse
Affiliation(s)
- Hongmei Li
- College of Chemical, Sichuan University, Chengdu 610064, China
| | - Bo Xie
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Chunqiong Hu
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| | - Mengyao Liu
- College of Chemical, Sichuan University, Chengdu 610064, China
| | - Dan Xiao
- College of Chemical, Sichuan University, Chengdu 610064, China
- College of Chemical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|