1
|
Lee JI, Jadamba C, Lee CG, Hong SC, Kim JH, Yoo SC, Park SJ. Feasibility study of Aesculus turbinata fruit shell-derived biochar for ammonia removal in wastewater and its subsequent use as nitrogen fertilizer. CHEMOSPHERE 2024; 357:142049. [PMID: 38631499 DOI: 10.1016/j.chemosphere.2024.142049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
In the face of increasing nitrogen demand for crop cultivation driven by population growth, this study presents a sustainable solution to address both the heightened demand and the energy-intensive process of nitrogen removal from wastewater. Our approach involves the removal of nitrogen from wastewater and its subsequent return to the soil as a fertilizer. Using biochar derived from Aesculus turbinata fruit shells (ATFS), a by-product of post-medical use, we investigated the effect of pyrolysis temperature on the NH4-N adsorption capacity of ATFS biochar (ATFS-BC). Notably, the ATFS-BC pyrolyzed at 300 °C (ATFS-BC300) exhibited the highest NH4-N adsorption capacity of 15.61 mg/g. The superior performance of ATFS-BC300 was attributed to its higher number of oxygen functional groups and more negatively charged surface, which contributed to the enhanced NH4-N adsorption. The removal of NH4-N by ATFS-BC300 involved both physical diffusion and chemisorption, with NH4-N forming a robust multilayer adsorption on the biochar. Alkaline conditions favored NH4-N adsorption by ATFS-BC300; however, the presence of trivalent and divalent ions hindered this process. Rice plants were cultivated to assess the potential of NH4-N adsorbed ATFS-BC300 (NH4-ATFS-BC300) as a nitrogen fertilizer. Remarkably, medium doses of NH4-ATFS-BC300 (594.5 kg/ha) exhibited key agronomic traits similar to those of the commercial nitrogen fertilizer in rice seedlings. Furthermore, high doses of NH4-ATFS-BC300 demonstrated superior agronomic traits compared to the commercial fertilizer. This study establishes the viability of utilizing ATFS-BC300 as a dual-purpose solution for wastewater treatment and nitrogen fertilizer supply, presenting a promising avenue for addressing environmental challenges.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chuluuntsetseg Jadamba
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea; Institute of Ecological Phytochemistry, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Chang Hong
- Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Agency, Wanju 55365, Republic of Korea
| | - Jin-Ho Kim
- Climate Change Assessment Division, National Institute of Agricultural Sciences, Rural Development Agency, Wanju 55365, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life & Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea; Institute of Ecological Phytochemistry, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong 17579, Republic of Korea.
| |
Collapse
|
2
|
Ahn SY, Yu C, Song YS. Cellulose Nanocrystal Embedded Composite Foam and Its Carbonization for Energy Application. Polymers (Basel) 2023; 15:3454. [PMID: 37631511 PMCID: PMC10459487 DOI: 10.3390/polym15163454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we fabricated a cellulose nanocrystal (CNC)-embedded aerogel-like chitosan foam and carbonized the 3D foam for electrical energy harvesting. The nanocrystal-supported cellulose foam can demonstrate a high surface area and porosity, homogeneous size ranging from various microscales, and a high quality of absorbing external additives. In order to prepare CNC, microcrystalline cellulose (MCC) was chemically treated with sulfuric acid. The CNC incorporates into chitosan, enhancing mechanical properties, crystallization, and generation of the aerogel-like porous structure. The weight percentage of the CNC was 2 wt% in the chitosan composite. The CNC/chitosan foam is produced using the freeze-drying method, and the CNC-embedded CNC/chitosan foam has been carbonized. We found that the degree of crystallization of carbon structure increased, including the CNCs. Both CNC and chitosan are degradable materials when CNC includes chitosan, which can form a high surface area with some typical surface-related morphology. The electrical cyclic voltammetric result shows that the vertical composite specimen had superior electrochemical properties compared to the horizontal composite specimen. In addition, the BET measurement indicated that the CNC/chitosan foam possessed a high porosity, especially mesopores with layer structures. At the same time, the carbonized CNC led to a significant increase in the portion of micropore.
Collapse
Affiliation(s)
- So Yeon Ahn
- Department of Fiber Convergence Materials Engineering, Dankook University, Jukjeon-dong, Yongin 16890, Republic of Korea;
| | - Chengbin Yu
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Seok Song
- Department of Fiber Convergence Materials Engineering, Dankook University, Jukjeon-dong, Yongin 16890, Republic of Korea;
| |
Collapse
|
3
|
Atchudan R, Perumal S, Sundramoorthy AK, Manoj D, Kumar RS, Almansour AI, Lee YR. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101654. [PMID: 37242070 DOI: 10.3390/nano13101654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of Anacardium occidentale (AO) nut-skin waste for high-performance supercapacitor applications. The as-prepared AO-PC material possessed interconnected micropore/mesopore structures and exhibited a high specific surface area of 615 m2 g-1. The Raman spectrum revealed a moderate degree of graphitization of AO-PC materials. These superior properties of the as-prepared AO-PC material help to deliver high specific capacitance. After fabricating the working electrode, the electrochemical performances including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements were conducted in 1 M H2SO4 aqueous solution using a three-electrode configuration for supercapacitor applications. The AO-PC material delivered a high specific capacitance of 193 F g-1 at a current density of 0.5 A g-1. The AO-PC material demonstrated <97% capacitance retention even after 10,000 cycles of charge-discharge at the current density of 5 A g-1. All the above outcomes confirmed that the as-prepared AO-PC from AO nut-skin waste via simple pyrolysis is an ideal electrode material for fabricating high-performance supercapacitors. Moreover, this work provides a cost-effective and environmentally friendly strategy for adding value to biomass waste by a simple pyrolysis route.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Zdolšek N, Perović I, Brković S, Tasić G, Milović M, Vujković M. Deep Eutectic Solvent for Facile Synthesis of Mn 3O 4@N-Doped Carbon for Aqueous Multivalent-Based Supercapacitors: New Concept for Increasing Capacitance and Operating Voltage. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8540. [PMID: 36500035 PMCID: PMC9737060 DOI: 10.3390/ma15238540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The capacitance and operating voltage of supercapacitors as well as their energy density have been increased by development of different materials and electrolytes. In this paper, two strategies, for the first time, were used to improve energy density: Mn3O4- and N-dual doped carbon electrode and aqueous mixture of multivalent ions as electrolyte. Mn3O4- and N-dual doped carbon was prepared by a novel and cost-effective procedure using deep eutectic solvent. XRD, XPS, and FTIR confirmed presence of Mn3O4 and nitrogen, while SEM and EDS elemental mapping showed micrometer-sized nanosheets with uniform distribution of C, O, N, and Mn atoms. Charge storage behavior of carbon was tested in aqueous multivalent-based electrolytes and their mixture (Ca2+-Al3+). Regarding both specific capacitance and workable voltage, the Ca2+-Al3+ mixed electrolyte was found as the best optimal solution. The calcium addition to the Al-electrolyte allows the higher operating voltage than in the case of individual Al(NO3)3 electrolyte while the addition of Al3+ ion in the Ca(NO3)2 electrolyte improves the multivalent-ion charge storage ability of carbon. As a result, the specific energy density of two-electrode Mn3O4@N-doped carbon//Al(NO3)2+Ca(NO3)2//Mn3O4@N-doped carbon supercapacitor (34 Wh kg-1 at 0.1 A g-1) overpasses the reported values obtained for Mn-based carbon supercapacitors using conventional aqueous electrolytes.
Collapse
Affiliation(s)
- Nikola Zdolšek
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Ivana Perović
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Snežana Brković
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Gvozden Tasić
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Miloš Milović
- Institute of Technical Sciences of SASA, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Milica Vujković
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-14, 11158 Belgrade, Serbia
| |
Collapse
|
5
|
Effects of Ca-Compounds on the Gases Formation Behavior during Molten Salts Thermal Treatment of Bio-Waste. Catalysts 2022. [DOI: 10.3390/catal12111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bio-waste utilization is essential, and pyrolysis is a prominent way for its effective utilization. However, the gradual accumulation of ash compounds in the intermediate products probably affects the thermal conversion characteristics of bio-waste. In the present study, beech wood and disposable chopsticks were selected as bio-waste samples. The effects of typical ash components (Ca-compounds) on volatile formation behavior were investigated during the molten salts thermal treatment of bio-waste. Results demonstrated that about 80% mass of initial bio-waste was gasified into the volatiles at 300 °C. The introduction of Ca-compounds in the molten salts slightly decreased the total yield of gaseous products. More specifically, Ca2+ could improve the generation of CO2 and suppress the generation of other gases (CO, H2, and CH4), and this is accompanied by a reduction in the low heating value (LHV) of the gases. The possible reason is that Ca2+ might act on the -OH bonds, phenyl C-C bond, methoxy bond and carboxylic acid -COOH bonds of the bio-waste to promote CO2 release. In contrast, the introduction of CO32− and OH- tended to relieve the inhibition effect of Ca2+ on the generation of H-containing gases. Meanwhile, the introduction of Ca2+ can promote the conversion of bio-waste into liquid products as well as increase the saturation level of liquid products. Moreover, as a vital form of carbon storage, CO2 was found to be abundant in the pyrolysis gases from molten salts thermal treatment of bio-waste, and the concentration of CO2 was much higher than that of direct-combustion or co-combustion with coal. It’s a promising way for bio-waste energy conversion as well as synchronized CO2 capture by using molten salts thermal treatment, while the introduction of small amounts of Ca-compounds was found to have no significant effect on the change of CO2 concentration.
Collapse
|
6
|
Flower-like molybdenum disulfide for efficient hydrogen and oxygen evolution reaction. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|