1
|
Li S, Dong X, Mao J, Chen W, Chen A, Wu G, Zhu C, Li G, Wei Y, Liu X, Wang J, Song Y, Wei W. Highly Efficient CO 2 Reduction at Steady 2 A cm -2 by Surface Reconstruction of Silver Penetration Electrode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301338. [PMID: 37183302 DOI: 10.1002/smll.202301338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Electroreduction of CO2 to CO is a promising route for greenhouse gas resource utilization, but it still suffers from impractical current density and poor durability. Here, a nanosheet shell (NS) vertically standing on the Ag hollow fiber (NS@Ag HF) surface formed by electrochemical surface reconstruction is reported. As-prepared NS@Ag HF as a gas penetration electrode exhibited a high CO faradaic efficiency of 97% at an ultra-high current density of 2.0 A cm-2 with a sustained performance for continuous >200 h operation. The experimental and theoretical studies reveal that promoted surface electronic structures of NS@Ag HF by the nanosheets not only suppress the competitive hydrogen evolution reaction but also facilitate the CO2 reduction kinetics. This work provides a feasible strategy for fabricating robust catalysts for highly efficient and stable CO2 reduction.
Collapse
Affiliation(s)
- Shoujie Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Jianing Mao
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gangfeng Wu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chang Zhu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Yiheng Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaohu Liu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Jiangjiang Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 100 Haike Road, Shanghai, 201210, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Ren C, Ni W, Li H. Recent Progress in Electrocatalytic Reduction of CO2. Catalysts 2023. [DOI: 10.3390/catal13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
A stable life support system in the spacecraft can greatly promote long-duration, far-distance, and multicrew manned space flight. Therefore, controlling the concentration of CO2 in the spacecraft is the main task in the regeneration system. The electrocatalytic CO2 reduction can effectively treat the CO2 generated by human metabolism. This technology has potential application value and good development prospect in the utilization of CO2 in the space station. In this paper, recent research progress for the electrocatalytic reduction of CO2 was reviewed. Although numerous promising accomplishments have been achieved in this field, substantial advances in electrocatalyst, electrolyte, and reactor design are yet needed for CO2 utilization via an electrochemical conversion route. Here, we summarize the related works in the fields to address the challenge technology that can help to promote the electrocatalytic CO2 reduction. Finally, we present the prospective opinions in the areas of the electrocatalytic CO2 reduction, especially for the space station and spacecraft life support system.
Collapse
|
3
|
Abstract
Facing greenhouse effects and the rapid exhaustion of fossil fuel, CO2 electrochemical reduction presents a promising method of environmental protection and energy transformation. Low onset potential, large current density, high faradaic efficiency (FE), and long-time stability are required for industrial production, due to economic costs and energy consumption. This minireview showcases the recent progress in catalyst design and engineering technology in CO2 reduction reaction (CO2RR) on copper based-catalysts. We focus on strategies optimizing the performance of copper-based catalysts, such as single-atom catalysts, doping, surface modification, crystal facet engineering, etc., and reactor design including gas diffusion layer, membrane electrode assembly, etc., in enhancing target electroreduction products including methane, methanol, ethylene, and C2+ oxygenates. The determination of the correlation and the developed technology might be helpful for future applications in the industry.
Collapse
|