1
|
Dong YW, Zhai XJ, Wu Y, Zhou YN, Li YC, Nan J, Wang ST, Chai YM, Dong B. Construction of n-type homogeneous to improve interfacial carrier transfer for enhanced photoelectrocatalytic hydrolysis. J Colloid Interface Sci 2024; 658:258-266. [PMID: 38104408 DOI: 10.1016/j.jcis.2023.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Photoelectrocatalyzed hydrogen production plays an important role in the path to carbon neutrality. The construction of heterojunctions provides an ideal example of an oxygen precipitation reaction. In this work, the performance of the n-n type heterojunction CeBTC@FeBTC/NIF in the photoelectronically coupled catalytic oxygen evolution reaction (OER) reaction is presented. The efficient transfer of carriers between components enhances the catalytic activity. Besides, the construction of heterojunctions optimizes the energy level structure and increases the absorption of light, and the microstructure forms holes with a blackbody effect that also enhances light absorption. Consequently, CeBTC@FeBTC/NIF has excellent photoelectric coupling catalytic properties and requires an overpotential of only 300 mV to drive a current density of 100 mA cm-2 under illumination. More importantly, the n-n heterojunction was found to be effective in enhancing charge and photogenerated electron migration by examining the carrier density of each component and carrier diffusion at the interface.
Collapse
Affiliation(s)
- Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yang Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ya-Nan Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi-Chuan Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Nan
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|