1
|
Synthesis and Application of Catalytic Materials in Energy and Environment. Catalysts 2023. [DOI: 10.3390/catal13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Catalytic materials have become prominent in many high-tech fields in recent years [...]
Collapse
|
2
|
Electrocatalytic Oxygen Reduction Reaction by the Pd/Fe-N-C Catalyst and Application in a Zn–Air Battery. Catalysts 2022. [DOI: 10.3390/catal12121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developing a non-platinum catalyst that effectively catalyzes the oxygen reduction reaction (ORR) is highly significant for metal–air batteries. Metal and nitrogen co-doped carbons (M-N-Cs) have emerged as alternative candidates to platinum. In this work, dual-metal Pd/Fe-N-C electrocatalysts were synthesized by the one-step pyrolysis of phytic acid, melamine, and Pd/Fe-based salts. The Pd/Fe-N-C catalyst exhibited a good catalytic ability during the ORR process and outperformed the commercial Pt/C catalyst as regards mass activity, catalytic stability, and methanol tolerance. It was found that Pd-Nx is the active center, and the synergistic effect from the Fe component introduction endowed the Pd/Fe-N-C with an excellent catalytic performance towards the ORR. When assembled into a Zn–air battery, its specific capacity was ~775 mAh gZn−1. Meanwhile, the peak power density could reach 3.85 W mgPd−1, i.e., 3.4 times that of the commercial Pt/C catalyst (1.13 W mgPt−1). This implies that the Pd/Fe-N-C catalyst has potential applications in metal–air batteries.
Collapse
|