1
|
Manickavasagam G, He C, Lin KYA, Saaid M, Oh WD. Recent advances in catalyst design, performance, and challenges of metal-heteroatom-co-doped biochar as peroxymonosulfate activator for environmental remediation. ENVIRONMENTAL RESEARCH 2024; 252:118919. [PMID: 38631468 DOI: 10.1016/j.envres.2024.118919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.
Collapse
Affiliation(s)
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Mardiana Saaid
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Wen-Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
2
|
Hu C, Chen Q, Wu S, Wang J, Zhang S, Chen L. Coupling harmful algae derived nitrogen and sulfur co-doped carbon nanosheets with CeO 2 to enhance the photocatalytic degradation of isothiazolinone biocide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120621. [PMID: 38520860 DOI: 10.1016/j.jenvman.2024.120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
Removing the algae from water bodies is an effective treatment toward the worldwide frequently occurred harmful algae blooms (HAB), but processing the salvaged algae waste without secondary pollution places another burden on the economy and environment. Herein, a green hydrothermal process without any chemical addition was developed to resource the HAB algae (Microcystis sp.) into autogenous nitrogen and sulfur co-doped carbon nanosheet materials C-CNS and W-CNS, whose alga precursors were collected from pure culture and a wild bloom pond, respectively. After coupling with CeO2, the obtained optimal C-CNS/CeO2 and W-CNS/CeO2 composites photocatalytically degraded 95.4% and 88.2% of the marine pollutant 4,5-Dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in 90 min, significantly higher than that of pure CeO2 (63.15%). DCOIT degradation on CNS/CeO2 was further conducted under different conditions, including pH value, coexisting cations and anions, and artificial seawater. Although different influences were observed, the removal efficiencies were all above 76%. Along with the ascertained good stability and reusability in five consecutive runs, the great potential of CNS/CeO2 for practical application was validated. UV-vis DRS showed the increased light absorption of CNS/CeO2 in comparison to pure CeO2. PL spectra and photoelectrochemical measurements suggested the lowered charge transfer resistance and thereby inhibited charge recombination of CNS/CeO2. Meanwhile, trapping experiments and electron paramagnetic resonance (EPR) detection verified the primary roles of hydroxyl radical (OH) and superoxide radical (O2-) in DCOIT degradation, as well as their notably augmented generation by CNS. Consequently, a mechanism of CNS enhanced photocatalytic degradation of DCOIT was proposed. The intermediates involved in the reaction were identified by LC-QTOF-MS, giving rise to a deduced degradation pathway for DCOIT. This study offers a new approach for resourceful utilization of the notorious HAB algae waste. Besides that, photocatalytic degradation has been explored as an effective measure to remove DCOIT from the ocean.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Qingdi Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Suxin Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Jiali Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Shizhen Zhang
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Liu N, Yuan J, Zhang X, Ren Y, Yu F, Ma J. 3D grape string-like heterostructures enable high-efficiency sodium ion capture in Ti 3C 2T x MXene/fungi-derived carbon nanoribbon hybrids. MATERIALS HORIZONS 2024; 11:1223-1233. [PMID: 38126361 DOI: 10.1039/d3mh01028g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
2D transition metal carbides and carbonitrides (MXenes) have emerged as promising electrode materials for electrochemistry ion capture but always suffer from severe layer-restacking and irreversible oxidation that restrains their electrochemical performance. Here we design a dual strategy of microstructure tailoring and heterostructure construction to synthesize a unique 3D grape string-like heterostructure consisting of Ti3C2Tx MXene hollow microspheres wrapped by fungi-derived N-doping carbon nanoribbons (denoted as GMNC). The 3D grape string-like heterostructure effectively avoids the aggregation of Ti3C2Tx MXene sheets and enhances the stability of MXenes, providing abundant active sites for ion capture, and an interconnected conductive bionic nanofiber network for high-rate electron transport. In consequence, GMNC achieves a superior adsorption capacity for sodium ions (Na+) in capacitive deionization (CDI) (162.37 mg gNaCl-1) with an ultra-high instantaneous adsorption rate (30.52 mg g-1 min-1) at an applied voltage of 1.6 V and satisfactory cycle stability over 100 cycles, which is a strong performer among the state-of-the-art values for MXene-based CDI electrodes. In addition, in situ electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurement combined with density functional theory (DFT) reveals the mechanisms of the Na+ capture process in the GMNC heterostructure. This work opens a new avenue for designing high-performance MXenes with a 3D hierarchical heterostructure for advanced electrochemical applications.
Collapse
Affiliation(s)
- Ningning Liu
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Jianhua Yuan
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Xiaochen Zhang
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Yifan Ren
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
| | - Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, P. R. China
| | - Jie Ma
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China.
- School of Civil Engineering, Kashi University, Kashi 844000, China
| |
Collapse
|
4
|
Tran TN, Do QC, Kang J, Kim J, Kim J, Kang S. Boosted micropollutant removal over urchin-like structured hydroxyapatite-incorporated nickel magnetite catalyst via peroxydisulfate activation. WATER RESEARCH 2024; 249:120951. [PMID: 38070342 DOI: 10.1016/j.watres.2023.120951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
In this work, urchin-like structured hydroxyapatite-incorporated nickel magnetite (NiFe3O4/UHdA) microspheres were developed for the efficient removal of micropollutants (MPs) via peroxydisulfate (PDS) activation. The prepared NiFe3O4/UHdA degraded 99.0 % of sulfamethoxazole (SMX) after 15 min in 2 mM PDS, having a first-order kinetic rate constant of 0.210 min-1. In addition, NiFe3O4/UHdA outperformed its counterparts, i.e., Fe3O4/UHdA and Ni/UHdA, by giving rise to corresponding 3.6-fold and 8.6-fold enhancements in the SMX removal rate. The outstanding catalytic performance can be ascribed to (1) the urchin-like mesoporous structure with a large specific surface area and (2) the remarkable synergistic effect caused by the redox cycle of Ni3+/Ni2+ and Fe2+/Fe3+ that enhances multipath electron transfers on the surface of NiFe3O4/UHdA to produce more reactive oxygen species. Moreover, the effects of several reaction parameters, in this case the initial solution pH, PDS dosage, SMX concentration, catalyst loading, co-existing MPs and humic acid level on the catalytic performance of the NiFe3O4/UHdA + PDS system were systematically investigated and discussed in detail. The plausible catalytic mechanisms in the NiFe3O4/UHdA + PDS system were revealed via scavenging experiments and electron paramagnetic resonance analysis, which indicated a radical (•OH and SO4•-) as the major pathway and a nonradical (1O2) as the minor pathway for SMX degradation. Furthermore, NiFe3O4/UHdA exhibited fantastic magnetically separation and retained good catalytic activity with a low leached ion concentration during the performance of four cycles. Overall, the prepared NiFe3O4/UHdA with outstanding PDS activation could be a promising choice for the degradation of persistent organic pollutants from wastewater.
Collapse
Affiliation(s)
- Thi Nhung Tran
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Quoc Cuong Do
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea; Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jungwan Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Junho Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jihye Kim
- Water and Wastewater Research Center, K-water Research Institute, 125 Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon 34045, South Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
5
|
Dong P, Shan P, Wang S, Ge B, Zhao C. Heterogeneous Fenton treatment of shale gas fracturing flow-back wastewater by spherical Fe/Al 2O 3 catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105685-105699. [PMID: 37715914 DOI: 10.1007/s11356-023-29687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
In this work, efficient Fenton strategy have been proposed for degradation of shale gas fracturing flow-back wastewater using the spherical Fe/Al2O3 supported catalyst. Prior to actual fracturing fluid treatment, the typical model wastewaters such as p-nitrophenol and polyacrylamide were employed to evaluate the catalytic properties of prepared catalyst, and then Fenton treatment of the shale gas fracturing flow-back wastewater was performed on the self-assembled catalytic degradation reactor for continuous flow purification. Results showed that under the conditions of 0.25 mol L-1 impregnating concentration, pH 4, 50 g L-1 catalyst and 0.75 mL L-1 30% H2O2, the removal efficiency of p-nitrophenol and polyacrylamide reached 74% and 61%, respectively, while the COD removal of fracturing flow-back fluid was approximately 48% with the residual 88 mg L-1 COD, meeting the emission standards of the integrated wastewater discharge standard (GB 8978-1996, COD < 100 mg L-1). This work offers new alternatives for Fenton treatment of real wastewater by efficient and low-cost supported catalysts.
Collapse
Affiliation(s)
- Pei Dong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Peipei Shan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Baosheng Ge
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
| |
Collapse
|
6
|
Kasirajan P, Karunamoorthy S, Velluchamy M, Subramaniam K, Park CM, Sundaram GB. Fabrication of copper molybdate nanoflower combined polymeric graphitic carbon nitride heterojunction for water depollution: Synergistic photocatalytic performance and mechanism insight. ENVIRONMENTAL RESEARCH 2023; 233:116428. [PMID: 37352950 DOI: 10.1016/j.envres.2023.116428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
In the scope, developed a novel copper molybdate decorated polymeric graphitic carbon nitride (CuMoO4@g-C3N4 or CMC) heterojunction nanocomposite in an easy solvothermal environment for the first time. The synthesized CMC improved the photocatalytic degradation of an antibiotic drug [ciprofloxacin (CIP)] and organic dye [Rhodamine B (RhB)]. Consequently, the CMC demonstrates a marvelous crystalline nature with ∼26 nm size, as obtained from XRD analysis. Besides, the surface morphology studies confirm the large-scale construction of flower-like CMC with a typical size of 10-15 nm. The CMC showed efficient catalytic activity for both the pollutants, achieving the degradation of 98% for RhB and 97% for CIP in 35 and 60 min, respectively. The reaction parameters including the concentration of pollutants, catalyst dosages, and scavengers are optimized for the best photocatalytic results. Notably, the trapping tests showed that the •OH and O2•- radicals are the primary oxidative species liable for the photocatalytic process. The recyclability test of the photocatalyst infers that the photocatalyst is highly stable up to the fifth recycle. Our work affords an efficient and ideal path to constructing the new g-C3N4-based architected photocatalyst for toxic wastewater treatment in the near future.
Collapse
Affiliation(s)
- Prakash Kasirajan
- Department of Chemistry, PSR Engineering College, Sivakasi, 626140, Tamil Nadu, India.
| | - Saravanakumar Karunamoorthy
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Muthuraj Velluchamy
- Department of Chemistry, V.H.N.S.N College (Autonomous), Virudhunagar, 626001, Tamil Nadu, India.
| | - Kalidass Subramaniam
- Department of Animal Science, Manonmaniam Sundaranar University, Thirunelveli, 627012, Tamil Nadu, India
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Ganesh Babu Sundaram
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Wang J, Yang J, Liu S, Yang C, Yang Q, Dang Z. Probing the activation mechanism of nitrogen-doped carbonaceous materials for persulfates: Based on the differences between peroxymonosulfate and peroxydisulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121685. [PMID: 37087085 DOI: 10.1016/j.envpol.2023.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
The activation processes of persulfates by metal-free nitrogen-doped carbonaceous material (NCM) remain unclear due to their complex structures and heterogeneous nature. On the other hand, from the perspective of persulfates, it is possible to clarify the reaction between persulfates and NCM by considering the differences in activation behaviors between peroxymonosulfate (PMS) and peroxydisulfate (PDS). Our study aims to compare the differences between NCM-PDS and NCM-PMS using a fully metal-free NCM as a model catalyst. Firstly, NCM-PDS was more efficient than NCM-PMS in degrading phenolic compounds (PCs). Secondly, the stoichiometric ratio between consumed persulfates and DCP removed in the NCM-PDS (0.73) is lower than in the NCM-PMS (1.08). Thirdly, PMS and PDS adsorb on NCM in different ways, suggesting that the peak O-O bond in PDS has blue shifted from 814 cm-1 to 805 cm-1, while that of O-O bond in PMS has shifted from 889 cm-1 to 834 cm-1. Additionally, the hydrogen bond between the phenolic group and oxidants plays a critical role in PCs degradation by NCM-PDS, exhibiting a stronger pH effect and higher kinetic isotope effects (KIEs) than NCM-PMS. A proton-coupled electron transfer process has been proposed for PCs degradation using NCM-PDS, and a scheme of reaction pathways has been provided for the NCM-PMS/PDS-PCs system. The study results provide a deeper understanding of the activation of persulfates by NCM, as well as a strategy for selecting oxidants.
Collapse
Affiliation(s)
- Jinling Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jingjing Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chen Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| | - Qian Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
8
|
Gou N, Yang W, Gao S, Li Q. Incorporation of ultrathin porous metal-free graphite carbon nitride nanosheets in polyvinyl chloride for efficient photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130795. [PMID: 36669405 DOI: 10.1016/j.jhazmat.2023.130795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Solid-phase photocatalytic degradation of waste plastics is one of the promising approaches to solve the "white pollution" problem. In this work, a low cost, metal-free, environmentally friendly organic photocatalyst, graphite carbon nitride (g-C3N4), was used for the first time to successfully enhance the photodegradation of polyvinyl chloride (PVC) under simulated sunlight from its visible light photocatalytic capability, while its organic nature and abundant surface functional groups were beneficial for its good dispersion in plastics. It was found that the ultrathin porous g-C3N4 nanosheet synthesized from urea (the UCN sample) had much stronger photodegradation effect in PVC/g-C3N4 composite films than its thick block counterpart synthesized with melamine (the MCN sample) due to its larger specific surface area, higher pore volume, and enhanced photogenerated charge carrier separation. With the incorporation of only 1 wt% UCN sample into PVC, its mechanical properties were largely enhanced with the tensile strength increase of ∼ 45% and the elongation at break increase of ∼ 72%, and its weight loss increased ∼ 58% after 120 h irradiation in the weather resistance test chamber. ·O2- and h+ produced by the UCN sample were found as the main active species in the photocatalytic degradation of PVC to dechlorinate PVC and decompose its long-chain molecules into short-chain small molecules until its final degradation into CO2 and H2O under ideal conditions.
Collapse
Affiliation(s)
- Ning Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Weiyi Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Gao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Qi Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
9
|
Lee SH, Annamalai S, Shin WS. Engineered ball-milled colloidal activated carbon material for advanced oxidation process of ibuprofen: Influencing factors and insights into the mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121023. [PMID: 36621710 DOI: 10.1016/j.envpol.2023.121023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study explores a simple and efficient, physically modified ball-milled activated carbon (ACBM) preparation from granular activated carbon (GAC), which can be demonstrated for groundwater application. The colloidal stability of the ACBM plays a vital role in the activation of peroxymonosulfate (PMS) and the degradation of pollutants. Adsorption kinetics and isotherm studies explain that the ACBM has more active sites and maximum adsorption capacity (qmax = 509 mg g-1) on the surface of the materials than GAC. The 92% of ibuprofen degradation was achieved at 240 min along with 0.1 g L-1 of ACBM, 5 mM of PMS, and 6.3 of initial solution pH. A chemical scavenger and electron spin resonance spectra also confirmed the formation of reactive oxygen species such as radicals (O2•-, HO•, SO4•-) and non-radical (1O2) in the ACBM/PMS system. Three major degradation pathways, hydroxylation, demethylation, and decarboxylation involved in ibuprofen degradation. Nearly 13 degradation by-products were detected during the ACBM/PMS oxidation of ibuprofen. The toxicity analysis of oxidation by-products of ibuprofen was also discussed by computational simulation employing the ecological structure-activity relationships software. The ACBM/PMS system was successfully applied to the natural groundwater system for ibuprofen degradation. Hence, the ACBM/PMS system is an excellent catalyst for real groundwater applications.
Collapse
Affiliation(s)
- Sang Hoon Lee
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sivasankar Annamalai
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Wang W, Zhang J, Hou Z, Chen P, Zhou X, Wang W, Tan F, Wang X, Qiao X. Improvement of Carbonyl Groups and Surface Defects in Carbon Nanotubes to Activate Peroxydisulfate for Tetracycline Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13010216. [PMID: 36616125 PMCID: PMC9824654 DOI: 10.3390/nano13010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 05/23/2023]
Abstract
Carbon nanotubes (CNTs) were considered a promising activator for persulfates due to their high electrical conductivity, large specific surface area and low toxicity. The functional groups and surface defects of CNTs could significantly affect their activation performance. In this study, CNTs with high C=O ratio and defect density (CNT-O-H) were prepared through a facile treatment of raw CNTs with HNO3 oxidation followed by calcination at 800 °C under an argon atmosphere. X-ray photoelectron spectroscopy (XPS) and Raman results showed that the C=O proportion and defect degree (ID/IG) rose to 75% and 1.53, respectively. The obtained CNT-O-H possessed a superior performance towards peroxydisulfate (PDS) activation, and the degradation efficiency of tetracycline (TC) in the CNT-O-H/PDS system was increased to 75.2% from 56.2% of the raw CNTs/PDS system within 40 min. Moreover, the activity of CNT-O-H after use could be easily recovered with re-calcination. In addition, the CNT-O-H/PDS system exhibited high adaptabilities towards wide solution pH (2-10), common coexisting substances and diverse organic pollutants. Singlet oxygen (1O2) was confirmed to be the dominant reactive oxygen species (ROS) generated in the CNT-O-H/PDS system. It was inferred that surface C=O groups and defects of CNTs were the key site to activate PDS for TC degradation.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Wang
- Correspondence: ; Tel./Fax: +86-27-87541540
| | | | | | | |
Collapse
|
11
|
Unraveling Charge Transfer Pathways and Mechanisms in CdS@CoWO4 Z-Scheme Heterojunction Photocatalysts for High-Efficiency Environmental Remediation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|