Yellatur CS, Padmasale R, T M, Loka SS. Facile electrooxidation of ethanol on reduced graphene oxide supported Pt-Pd bimetallic nanocomposite surfaces in acidic media.
NANOTECHNOLOGY 2022;
33:335401. [PMID:
35533662 DOI:
10.1088/1361-6528/ac6df7]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Development of electrocatalysts with extended homogeneity and improved metal-support interactions is of urgent scientific need in the context of electrochemical energy applications. Herein, bimetallic Pt-Pd nanoparticles with good homogeneity are fabricated using a convenient solution phase chemical reduction method onto a reduced graphene oxide (rGO) support. X-ray diffraction studies revealed that Pt-Pd/rGO possesses the crystallite size of 3.1 nm. The efficacies of Pt-Pd/rGO catalyst (20 wt% Pt + 10 wt% Pd on rGO support, Pt:Pd atomic ratio = 1:1) towards ethanol electrooxidation reaction (EOR) are evaluated in acidic conditions by cyclic voltammetry using catalyst-coated glassy carbon electrode as a working electrode. With the better dispersion on rGO support the Pt-Pd/rGO nancomposite catalyst exhibit highest mass specific activity (0.358 mA/µg-Pt) which is observed to be 1.9 times of similarly synthesized 20 wt% Pt/rGO (0.189 mA/µg-Pt) and 2.5 times of commercial 20 wt% Pt/C (0.142 mA/µg-Pt), respectively. Apart from the observed improved EOR activity, the Pt-Pd/rGO catalyst exhibited better stability than Pt/rGO and Pt/C catalysts. Strong synergy offered by Pt, Pd and rGO support could contribute to the observed higher EOR activity of Pt-Pd/rGO.
Collapse