1
|
Godini HR, Bhasin MM. Oxidative Coupling of Methane: A Review Study on the Catalytic Performance. Molecules 2024; 29:4649. [PMID: 39407577 PMCID: PMC11477496 DOI: 10.3390/molecules29194649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extensive data on the characteristics and performance of the catalysts synthesized and tested for methane oxidative coupling (OCM) is available in thousands of reports published during the last four decades. Revisiting and analyzing the general trends recognizable in those data could improve the current understanding of the catalyst functionality under different reaction conditions. This is instrumental in determining the direction of future research aiming for more efficient OCM catalysts and reactors. These are the subjects of the comprehensive analysis reported in this paper, which covers the main aspects associated with the analysis of the OCM catalytic performance, including the catalyst characteristics, reaction mechanism, and reactor operation. Special attention was devoted to analyzing these aspects in the framework of thermal-reaction engineering and, accordingly, critically reviewing the reported catalytic performances in the literature.
Collapse
Affiliation(s)
- Hamid Reza Godini
- Chair of Process Dynamics and Operation, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Madan Mohan Bhasin
- Innovative Catalytic Solutions, LLC, 2048 Smith Road, Charleston, WV 25324, USA;
| |
Collapse
|
2
|
Pei C, Chen S, Fu D, Zhao ZJ, Gong J. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chem Rev 2024; 124:2955-3012. [PMID: 38478971 DOI: 10.1021/acs.chemrev.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The structure of catalysts determines the performance of catalytic processes. Intrinsically, the electronic and geometric structures influence the interaction between active species and the surface of the catalyst, which subsequently regulates the adsorption, reaction, and desorption behaviors. In recent decades, the development of catalysts with complex structures, including bulk, interfacial, encapsulated, and atomically dispersed structures, can potentially affect the electronic and geometric structures of catalysts and lead to further control of the transport and reaction of molecules. This review describes comprehensive understandings on the influence of electronic and geometric properties and complex catalyst structures on the performance of relevant heterogeneous catalytic processes, especially for the transport and reaction over structured catalysts for the conversions of light alkanes and small molecules. The recent research progress of the electronic and geometric properties over the active sites, specifically for theoretical descriptors developed in the recent decades, is discussed at the atomic level. The designs and properties of catalysts with specific structures are summarized. The transport phenomena and reactions over structured catalysts for the conversions of light alkanes and small molecules are analyzed. At the end of this review, we present our perspectives on the challenges for the further development of structured catalysts and heterogeneous catalytic processes.
Collapse
Affiliation(s)
- Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Donglong Fu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
3
|
Gold and Ceria Modified NiAl Hydrotalcite Materials as Catalyst Precursors for Dry Reforming of Methane. Catalysts 2023. [DOI: 10.3390/catal13030606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Structured hydrotalcite NiAl-HT material with Ni/Al atomic ratio of 2.5 was prepared by co-precipitation of Ni and Al nitrate precursors and then modified by the addition of 1 wt% Ce and/or 3 wt% Au species. The obtained materials, after calcination at 600 °C, were characterized by XRD, XPS and TPR. Their catalytic performance was tested through dry reforming of methane (DRM) and by the temperature-programmed surface reaction of methane (TPSR-CH4). Thermal gravimetry analysis (TGA) of the spent catalysts was performed to determine the amount of carbon accumulated during the reaction. The effects of the addition of cerium as a support promoter and gold as nickel promoter and the sequential addition of cerium and gold on the structural properties and on the catalytic efficiency were investigated. Under the severe condition of high space velocity (600,000 mL g−1 h−1), all the catalysts were quite active, with values of CH4 conversion between 67% and 74% at 700 °C. In particular, the combination of cerium and gold enhanced the CH4 conversion up to 74%. Both additives, individually and simultaneously, enhanced the nickel dispersion with respect to the unpromoted NiAl and favored the reducibility of the nickel. During DRM all the catalysts formed graphitic carbon, contributing to their deactivation. The lower carbon gasification temperature of the promoted catalysts confirmed a positive effect played by Ce and Au in assisting the formation of an easier-to-remove carbon. The positive effect was testified by the better stability of the Ce/NiAl with respect to the other catalysts. In the gold-containing samples, this effect was neutralized by Au diffusing towards the catalyst surface during DRM, masking the nickel active sites. TPSR-CH4 test highlighted different CH4 activation capability of the catalysts. Furthermore, the comparison of the deposited carbon features (amount and removal temperature) of the DRM and TPSR spent catalysts indicated a superior activation of CO2 by the Au/Ce/NiAl, to be related to the close interaction of gold and ceria enhancing the oxygen mobility in the catalyst lattice.
Collapse
|
4
|
Tarifa P, Ramirez Reina T, González-Castaño M, Arellano-García H. Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl 2O 4 as a Bifunctional Catalyst. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:8267-8273. [PMID: 35966174 PMCID: PMC9358644 DOI: 10.1021/acs.energyfuels.2c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.
Collapse
Affiliation(s)
- Pilar Tarifa
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| | - Tomás Ramirez Reina
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU2 7XH, United Kingdom
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Miriam González-Castaño
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| | - Harvey Arellano-García
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| |
Collapse
|
5
|
CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts 2022. [DOI: 10.3390/catal12050452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transitioning to lower carbon energy and environment sustainability requires a reduction in greenhouse gases such as carbon dioxide (CO2) and methane (CH4) that contribute to global warming. One of the most actively studied rare earth metal catalysts is cerium oxide (CeO2) which produces remarkable improvements in catalysts in dry reforming methane. This paper reviews the management of CO2 emissions and the recent advent and trends in bimetallic catalyst development utilizing CeO2 in dry reforming methane (DRM) and steam reforming methane (SRM) from 2015 to 2021 as a way to reduce greenhouse gas emissions. This paper focus on the identification of key trends in catalyst preparation using CeO2 and the effectiveness of the catalysts formulated.
Collapse
|
6
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Miri SS, Meshkani F, Rastegarpanah A, Rezaei M. Influence of Fe, La, Zr, Ce, and Ca on the catalytic performance and coke formation in dry reforming of methane over Ni/MgO.Al2O3 catalyst. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.116956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Rosset M, Féris LA, Perez-Lopez OW. Biogas dry reforming over Ni-M-Al (M = K, Na and Li) layered double hydroxide-derived catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Zhang Y, Zeng R, Zu Y, Zhu L, Mei Y, Luo Y, He D. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.08.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
|
11
|
On the Effect of the M3+ Origin on the Properties and Aldol Condensation Performance of MgM3+ Hydrotalcites and Mixed Oxides. Catalysts 2021. [DOI: 10.3390/catal11080992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrotalcites (HTCs) are promising solid base catalysts to produce advanced biofuels by aldol condensation. Their main potential lies in the tunability of their acid-base properties by varying their composition. However, the relationship between the composition of hydrotalcites, their basicity, and their catalytic performance has not yet been fully revealed. Here, we investigate systematically the preparation of HTCs with the general formula of Mg6M3+2(OH)16CO3·4H2O, where M3+ stands for Al, Ga, Fe, and In, while keeping the Mg/M3+ equal to 3. We use an array of analytical methods including XRD, N2 physisorption, CO2-TPD, TGA-MS, FTIR-ATR, and SEM to assess changes in the properties and concluded that the nature of M3+ affected the HTC crystallinity. We show that the basicity of the HTC-derived mixed oxides decreased with the increase in atomic weight of M3+, which was reflected by decreased furfural conversion in its aldol condensation with acetone. We demonstrate that all MgM3+ mixed oxides can be fully rehydrated, which boosted their activity in aldol condensation. Taking all characterization results together, we conclude that the catalytic performance of the rehydrated HTCs is determined by the “host” MgO component, rather than the nature of M3+.
Collapse
|
12
|
Abstract
Abstract
The reforming of methane is an important industrial process, and reactor modeling and simulation is frequently employed as a design and analysis tool in understanding this process. While much research work is devoted to catalyst formulations, reaction mechanisms, and reactor designs, this review aims to summarize the literature concerning the simulation of methane reforming. Applications in industrial practice are highlighted, and the three main approaches to representing the reactions are briefly discussed. An overview of simulation studies focusing on methane reforming is presented. The three central methods for fixed-bed reactor modeling are discussed. Various approaches and modern examples are discussed, presenting their modeling methods and key findings. The overall objective of this paper is to provide a dedicated review of simulation work done for methane reforming and provide a reference for understanding this field and identifying possible new paths.
Collapse
|
13
|
Recent Developments in Dielectric Barrier Discharge Plasma-Assisted Catalytic Dry Reforming of Methane over Ni-Based Catalysts. Catalysts 2021. [DOI: 10.3390/catal11040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The greenhouse effect is leading to global warming and destruction of the ecological environment. The conversion of carbon dioxide and methane greenhouse gases into valuable substances has attracted scientists’ attentions. Dry reforming of methane (DRM) alleviates environmental problems and converts CO2 and CH4 into valuable chemical substances; however, due to the high energy input to break the strong chemical bonds in CO2 and CH4, non-thermal plasma (NTP) catalyzed DRM has been promising in activating CO2 at ambient conditions, thus greatly lowering the energy input; moreover, the synergistic effect of the catalyst and plasma improves the reaction efficiency. In this review, the recent developments of catalytic DRM in a dielectric barrier discharge (DBD) plasma reactor on Ni-based catalysts are summarized, including the concept, characteristics, generation, and types of NTP used for catalytic DRM and corresponding mechanisms, the synergy and performance of Ni-based catalysts with DBD plasma, the design of DBD reactor and process parameter optimization, and finally current challenges and future prospects are provided.
Collapse
|
14
|
|
15
|
Nickel Phosphide Catalysts as Efficient Systems for CO2 Upgrading via Dry Reforming of Methane. Catalysts 2021. [DOI: 10.3390/catal11040446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work establishes the primordial role played by the support’s nature when aimed at the constitution of Ni2P active phases for supported catalysts. Thus, carbon dioxide reforming of methane was studied over three novel Ni2P catalysts supported on Al2O3, CeO2 and SiO2-Al2O3 oxides. The catalytic performance, shown by the catalysts’ series, decreased according to the sequence: Ni2P/Al2O3 > Ni2P/CeO2 > Ni2P/SiO2-Al2O3. The depleted CO2 conversion rates discerned for the Ni2P/SiO2-Al2O3 sample were associated to the high sintering rates, large amounts of coke deposits and lower fractions of Ni2P constituted in the catalyst surface. The strong deactivation issues found for the Ni2P/CeO2 catalyst, which also exhibited small amounts of Ni2P species, were majorly associated to Ni oxidation issues. Along with lower surface areas, oxidation reactions might also affect the catalytic behaviour exhibited by the Ni2P/CeO2 sample. With the highest conversion rate and optimal stabilities, the excellent performance depicted by the Ni2P/Al2O3 catalyst was mostly related to the noticeable larger fractions of Ni2P species established.
Collapse
|
16
|
Mytareva AI, Bokarev DA, Stakheev AY. Seven Modern Trends in the DeNOx Catalyst Development. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158420060105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Abdelsadek Z, Holgado JP, Halliche D, Caballero A, Cherifi O, Gonzalez-Cortes S, Masset PJ. Examination of the Deactivation Cycle of NiAl- and NiMgAl-Hydrotalcite Derived Catalysts in the Dry Reforming of Methane. Catal Letters 2021. [DOI: 10.1007/s10562-020-03513-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
González-Castaño M, Dorneanu B, Arellano-García H. The reverse water gas shift reaction: a process systems engineering perspective. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00478b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RWGS reaction thermodynamics, mechanisms and kinetics. Process design and process intensification – from lab scale to industrial applications and CO2 value chains. Pathways for further improvement of catalytic systems, reactor and process design.
Collapse
Affiliation(s)
- Miriam González-Castaño
- Department of Process and Plant Technology
- Brandenburg University of Technology (BTU) Cottbus-Senftenberg
- Cottbus
- Germany
| | - Bogdan Dorneanu
- Department of Process and Plant Technology
- Brandenburg University of Technology (BTU) Cottbus-Senftenberg
- Cottbus
- Germany
| | - Harvey Arellano-García
- Department of Process and Plant Technology
- Brandenburg University of Technology (BTU) Cottbus-Senftenberg
- Cottbus
- Germany
| |
Collapse
|
19
|
Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.06.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
A Review on Catalysts Development for Steam Reforming of Biodiesel Derived Glycerol; Promoters and Supports. Catalysts 2020. [DOI: 10.3390/catal10080910] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In the last decades, environmental crises and increasing energy demand have motivated researchers to investigate the practical techniques for the production of clean fuels through renewable energy resources. It is essential to develop technologies to utilize glycerol as a byproduct derived from biodiesel. Glycerol is known as a sustainable and clean source of energy, which can be an alternative resource for the production of value-added chemicals and hydrogen. The hydrogen production via steam reforming (SR) of glycerol using Ni-based catalysts is one of the promising approaches for the entry of the hydrogen economy. The purpose of this review paper is to highlight the recent trends in hydrogen production over Ni-based catalysts using the SR of glycerol. The intrinsic ability of Ni to disperse easily over variable supports makes it a more viable active phase for the SR catalysts. The optimal reaction conditions have been indicated as 650–900 °C, 1 bar, and 15 wt% Ni in catalysts for high glycerol conversion. In this review paper, the effects of various supports, different promoters (K, Ca, Sr, Ce, La, Cr, Fe), and process conditions on the catalytic performance have been summarized and discussed to provide a better comparison for the future works. It was found that Ce, Mg, and La have a significant effect on catalytic performance as promoters. Moreover, SR of glycerol over hydrotalcite and perovskite-based catalysts have been reviewed as they suggest high catalytic performance in SR of glycerol with improved thermal stability and coke resistance. More specifically, the Ni/LaNi0.9Cu0.1O3 synthesized using perovskite-type supports has shown high glycerol conversion and sufficient hydrogen selectivity at low temperatures. On the other hand, hydrotalcite-like catalysts have shown higher catalytic stability due to high thermal stability and low coke formation. It is vital to notice that the primary concern is developing a high-performance catalyst to utilize crude glycerol efficiently.
Collapse
|
21
|
Wang H, Zhao B, Qin L, Wang Y, Yu F, Han J. Non-thermal plasma-enhanced dry reforming of methane and CO2 over Ce-promoted Ni/C catalysts. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110821] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Novel Nickel- and Magnesium-Modified Cenospheres as Catalysts for Dry Reforming of Methane at Moderate Temperatures. Catalysts 2019. [DOI: 10.3390/catal9121066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cenospheres from coal fly ashes were used as support in the preparation of Ni–Mg catalysts for dry reforming of methane. These materials were characterized by means of XRD, H2-temperature-programmed reduction (H2-TPR), CO2-temperature-programmed desorption (CO2-TPD), and low-temperature nitrogen sorption techniques. The cenosphere-supported catalysts showed relatively high activity and good stability in the dry reforming of methane (DRM) at 700 °C. The catalytic performance of modified cenospheres was found to depend on both Ni and Mg content. The highest activity at 750 °C and 1 atm was observed for the catalyst containing 30 wt % Mg and 10, 20, and 30 wt % Ni, yielding to CO2 and CH4 conversions of around 95%.
Collapse
|
23
|
Kalai DY, Stangeland K, Tucho WM, Jin Y, Yu Z. Biogas reforming on hydrotalcite-derived Ni-Mg-Al catalysts: the effect of Ni loading and Ce promotion. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Moura-Nickel CD, Tachinski CG, Landers R, De Noni A, Virmond E, Peterson M, Moreira RDFPM, José HJ. Syngas production by dry reforming of methane using lyophilized nickel catalysts. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
|
26
|
Yang ZZ, Wei JJ, Zeng GM, Zhang HQ, Tan XF, Ma C, Li XC, Li ZH, Zhang C. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Ojeda-Niño OH, Gracia F, Daza C. Role of Pr on Ni–Mg–Al Mixed Oxides Synthesized by Microwave-Assisted Self-Combustion for Dry Reforming of Methane. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00557] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oscar H. Ojeda-Niño
- Estado Sólido y Catálisis Ambiental, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, D.C., Colombia, AK 30 # 45-03, Bogotá, Colombia
| | - Francisco Gracia
- Laboratorio de Catálisis y Energía, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y matemáticas, Universidad de Chile, Av. Beauchef 851, Santiago, Chile
| | - Carlos Daza
- Estado Sólido y Catálisis Ambiental, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, D.C., Colombia, AK 30 # 45-03, Bogotá, Colombia
| |
Collapse
|
28
|
Abstract
We developed a series of new hydrotalcite functionalized Ru catalytic system to synthesize
formic acid via CO2 hydrogenation reaction. Advance analytical procedures like FTIR, N2 physisorption,
ICP-OES, XPS, and TEM analysis were applied to understand the physiochemical nature of functionalized
hydrotalcite materials. This well-analyzed system was used as catalysts for CO2 hydrogenation
reaction (with and without ionic liquid medium). Ru metal containing functionalized hydrotalcite
materials were found highly active catalysts for formic acid synthesis via hydrogenation reaction. The
concern of catalyst stability was studied via catalysts leaching and recycling experiments. We recycled
the ionic liquid mediated functionalized hydrotalcite catalytic system up to 8 runs without any significant
loss of catalytic activity. Surprisingly, no sign of catalyst leaching was recorded during the catalyst
recycling experiment.
Collapse
Affiliation(s)
- Vivek Srivastava
- Basic Sciences: Chemistry, NIIT University, NH-8 Jaipur/Delhi Highway, Neemrana (Rajasthan), Pin Code: 301705, India
| |
Collapse
|
29
|
Ce- and Y-Modified Double-Layered Hydroxides as Catalysts for Dry Reforming of Methane: On the Effect of Yttrium Promotion. Catalysts 2019. [DOI: 10.3390/catal9010056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ce- and Y-promoted double-layered hydroxides were synthesized and tested in dry reforming of methane (CH4/CO2 = 1/1). The characterization of the catalysts was performed using X-ray fluorescence (XRF), X-ray diffraction (XRD), N2 sorption, temperature-programmed reduction in H2 (TPR-H2), temperature-programmed desorption of CO2 (TPD-CO2), H2 chemisorption, thermogravimetric analysis coupled by mass spectrometry (TGA/MS), Raman, and high-resolution transmission electron microscopy (HRTEM). The promotion with cerium influences textural properties, improves the Ni dispersion, decreases the number of total basic sites, and increases the reduction temperature of nickel species. After promotion with yttrium, the increase in basicity is not directly correlated with the increasing Y loading on the contrary of Ni dispersion. Dry reforming of methane (DRM) was performed as a function of temperature and in isothermal conditions at 700 °C for 5 h. For catalytic tests, a slight increase of the activity is observed for both Y and Ce doped catalysts. This improvement can of course be explained by Ni dispersion, which was found higher for both Y and Ce promoted catalysts. During DRM, the H2/CO ratio was found below unity, which can be explained by side reactions occurrence. These side reactions are linked with the increase of CO2 conversion and led to carbon deposition. By HRTEM, only multi-walled and helical-shaped carbon nanotubes were identified on Y and Ce promoted catalysts. Finally, from Raman spectroscopy, it was found that on Y and Ce promoted catalysts, the formed C is less graphitic as compared to only Ce-based catalyst.
Collapse
|
30
|
Heard CJ, Čejka J, Opanasenko M, Nachtigall P, Centi G, Perathoner S. 2D Oxide Nanomaterials to Address the Energy Transition and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801712. [PMID: 30132995 DOI: 10.1002/adma.201801712] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/18/2018] [Indexed: 05/24/2023]
Abstract
2D oxide nanomaterials constitute a broad range of materials, with a wide array of current and potential applications, particularly in the fields of energy storage and catalysis for sustainable energy production. Despite the many similarities in structure, composition, and synthetic methods and uses, the current literature on layered oxides is diverse and disconnected. A number of reviews can be found in the literature, but they are mostly focused on one of the particular subclasses of 2D oxides. This review attempts to bridge the knowledge gap between individual layered oxide types by summarizing recent developments in all important 2D oxide systems including supported ultrathin oxide films, layered clays and double hydroxides, layered perovskites, and novel 2D-zeolite-based materials. Particular attention is paid to the underlying similarities and differences between the various materials, and the subsequent challenges faced by each research community. The potential of layered oxides toward future applications is critically evaluated, especially in the areas of electrocatalysis and photocatalysis, biomass conversion, and fine chemical synthesis. Attention is also paid to corresponding novel 3D materials that can be obtained via sophisticated engineering of 2D oxides.
Collapse
Affiliation(s)
- Christopher J Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Science, Dolejškova 3, 182 23, Prague 8, Czech Republic
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Gabriele Centi
- Dept.s MIFT and ChiBioFarAm-Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno S'Alcontres 31, 98166, Messina, Italy
| | - Siglinda Perathoner
- Dept.s MIFT and ChiBioFarAm-Industrial Chemistry, University of Messina, ERIC aisbl and CASPE/INSTM, V.le F. Stagno S'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
31
|
Świrk K, Motak M, Grzybek T, Rønning M, Da Costa P. Effect of low loading of yttrium on Ni-based layered double hydroxides in CO2 reforming of CH4. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1515-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
|
33
|
Low Temperature Activation of Carbon Dioxide by Ammonia in Methane Dry Reforming—A Thermodynamic Study. Catalysts 2018. [DOI: 10.3390/catal8100481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methane dry reforming (MDR) is an attractive alternative to methane steam reforming for hydrogen production with low harmful environmental emissions on account of utilizing carbon dioxide in the feed. However, carbon formation in the product stream has been the most challenging aspect of MDR, as it leads to catalyst deactivation by coking, prevalent in hydrocarbon reforming reactions. Common strategies to limit coking have mainly targeted catalyst modifications, such as by doping with rare earth metals, supporting on refractory oxides, adding oxygen/steam in the feed, or operating at reaction conditions (e.g., higher temperature), where carbon formation is thermodynamically restrained. These methods do help in suppressing carbon formation; nonetheless, to a large extent, catalyst activity and product selectivity are also adversely affected. In this study, the effect of ammonia addition in MDR feed on carbon suppression is presented. Based on a thermodynamic equilibrium analysis, the most significant observation of ammonia addition is towards low temperature carbon dioxide activation to methane, along with carbon removal. Results indicate that ammonia not only helps in removing carbon formation, but also greatly enriches hydrogen production.
Collapse
|
34
|
Świrk K, Gálvez ME, Motak M, Grzybek T, Rønning M, Da Costa P. Yttrium promoted Ni-based double-layered hydroxides for dry methane reforming. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
In-Situ Deposition of Plasmonic Gold Nanotriangles and Nanoprisms onto Layered Hydroxides for Full-Range Photocatalytic Response towards the Selective Reduction of p-Nitrophenol. Catalysts 2018. [DOI: 10.3390/catal8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, we present photocatalysis as a greener alternative to conventional catalysis where harsh reaction conditions, temperature and/or pressure are needed. Photodegradation of organic pollutants is a cost-effective, eco-friendly solution for the decontamination of water and air, and is a field that has been continuously growing over the last decade. Plasmonic metal nanoparticles absorb light irradiation that is transferred to the chemical reaction in a different fashion. Furthermore, plasmonic nanostructures can be combined with other materials, such as semiconductors or a basic support, to create hybrid systems capable of overcoming certain challenges that photocatalysis is facing nowadays and to expand the photocatalytic response towards the whole visible-near infrared (Vis-NIR) ranges. The main objective of this work has been to in-situ synthesize plasmonic anisotropic gold nanoparticles onto hydrotalcite (HT) and calcined hydrotalcite (CHT) supports by way of a sequential deposition-reduction (DR) process and to evaluate their efficiency as heterogeneous catalysts towards the selective oxidation of p-nitrophenol (hereafter 4-NP), a well-known model contaminant, either in the absence or the presence of full-range light irradiation sources (LEDs) spanning the whole UV-Vis-NIR range. Special attention has been paid to the optimization of the catalyst preparation parameters, including the pH and the concentration of reducing and stabilizing agents. Interestingly, the use of thermally modified hydrotalcites has enabled a strong metal-support interaction to induce the preferential formation of triangular-shaped Au nanoparticles with ca. 0.8 wt.% loading while increasing the colloidal stability and surface area of the catalyst with respect to the commercial untreated HT supports.
Collapse
|
36
|
Active and stable hydrotalcite derived Ni catalysts for CO2 reforming of methane: Comparison with catalysts by incipient wetness. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2017.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Conterosito E, Gianotti V, Palin L, Boccaleri E, Viterbo D, Milanesio M. Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Burger T, Koschany F, Wenng A, Thomys O, Köhler K, Hinrichsen O. Simultaneous activity and stability increase of co-precipitated Ni–Al CO2 methanation catalysts by synergistic effects of Fe and Mn promoters. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01834k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activity and stability of co-precipitated NiAlOx catalysts in the CO2 methanation reaction is targetedly enhanced by co-doping Fe and Mn.
Collapse
Affiliation(s)
- Thomas Burger
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| | - Franz Koschany
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| | - Andreas Wenng
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| | - Oliver Thomys
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| | - Klaus Köhler
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| | - Olaf Hinrichsen
- Department of Chemistry
- Technische Universität München
- 85748 Garching b. München
- Germany
- Catalysis Research Center
| |
Collapse
|
39
|
|