1
|
Bilyachenko AN, Khrustalev VN, Dorovatovskii PV, Shul'pina LS, Ikonnikov NS, Shubina ES, Lobanov NN, Aliyeva VA, Nunes AVM, Mahmudov KT, Kozlov YN, Pombeiro AJL. Fe(III)-Based Phenylsilsesquioxane/Acetylacetonate Complexes: Synthesis, Cage-like Structure, and High Catalytic Activity. Inorg Chem 2024; 63:1909-1918. [PMID: 38215459 DOI: 10.1021/acs.inorgchem.3c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Unprecedented iron-based silsesquioxane/acetylacetonate complexes were synthesized. The intriguing cage-like structure of compounds is alkaline metal-dependent: the Fe2Li2 complex includes condensed Si6-silsesquioxane and four acetylacetonate ligands; the Fe4Na4 complex exhibits two cyclic Si4-silsesquioxane and eight acetylacetonate ligands, while the Fe3K3 complex features two cyclic Si3-silsesquioxane and six acetylacetonate ligands. The latter case is the very first observation of small trimeric silsesquioxane ligands in the composition of cage-like metallasilsesquioxanes. The Fe4Na4-based complex exhibits a record high activity in the oxidation of inert alkanes with peroxides (55% yield of oxygenates in cyclohexane oxidation). It also acts as a catalyst in the cycloaddition of CO2 with epoxides, leading to cyclic carbonates in good yields (58-96%).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Pl., Moscow 123182, Russian Federation
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| | - Nikolai N Lobanov
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Vusala A Aliyeva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
| | - Ana V M Nunes
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica 2829-516, Portugal
| | - Kamran T Mahmudov
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 23, Baku Az 1148, Azerbaijan
| | - Yuriy N Kozlov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Ulitsa Kosygina, Moscow 119991, Russian Federation
- Plekhanov Russian University of Economics, 36 Stremyannyi Pereulok, Moscow 117997, Russian Federation
| | - Armando J L Pombeiro
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Bilyachenko AN, Gutsul EI, Khrustalev VN, Astakhov GS, Zueva AY, Zubavichus YV, Kirillova MV, Shul'pina LS, Ikonnikov NS, Dorovatovskii PV, Shubina ES, Kirillov AM, Shul'pin GB. Acetone Factor in the Design of Cu 4-, Cu 6-, and Cu 9-Based Cage Coppersilsesquioxanes: Synthesis, Structural Features, and Catalytic Functionalization of Alkanes. Inorg Chem 2022; 61:14800-14814. [PMID: 36059209 DOI: 10.1021/acs.inorgchem.2c02217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Evgenii I Gutsul
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Grigorii S Astakhov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Anna Y Zueva
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay St., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS, Nikolskii prosp., 1, Koltsovo 630559, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Lidia S Shul'pina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Nikolay S Ikonnikov
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander M Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina, dom 4, Moscow 119991, Russia.,Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| |
Collapse
|
3
|
Astakhov GS, Khrustalev VN, Dronova MS, Gutsul EI, Korlyukov AA, Gelman D, Zubavichus YV, Novichkov DA, Trigub AL, Shubina ES, Bilyachenko AN. Cage-like manganesesilsesquioxanes: features of their synthesis, unique structure, and catalytic activity in oxidative amidations. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01054b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of Mn-based cage-like silsesquioxanes (and complexes with 1,10-phenanthroline) exhibits unique types of molecular architectures and catalytic activity in oxidative amidation reactions.
Collapse
Affiliation(s)
- Grigorii S. Astakhov
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Victor N. Khrustalev
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Marina S. Dronova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Evgenii I. Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovitianov Str., 1, Moscow 117997, Russia
| | - Dmitri Gelman
- Institute of Chemistry, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yan V. Zubavichus
- Boreskov Institute of Catalysis SB RAS, prosp. Akad. Lavrentieva, 5, Novosibirsk 630090, Russia
| | - Daniil A. Novichkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 3, Moscow 119991, Russian Federation
| | - Alexander L. Trigub
- National Research Center “Kurchatov Institute”, Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| | - Alexey N. Bilyachenko
- Peoples’ Friendship University of Russia, Miklukho-Maklay Street, 6, 117198 Moscow, Russia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
4
|
The effect of additives (pyrazine, pyrazole and their derivatives) in the oxidation of 2-butanol with FeCl3‒H2O2 in aqueous solutions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Costa IFM, Kirillova MV, André V, Fernandes TA, Kirillov AM. Time-Dependent Self-Assembly of Copper(II) Coordination Polymers and Tetranuclear Rings: Catalysts for Oxidative Functionalization of Saturated Hydrocarbons. Inorg Chem 2021; 60:14491-14503. [PMID: 34128647 DOI: 10.1021/acs.inorgchem.1c01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study describes a time-dependent self-assembly generation of new copper(II) coordination compounds from an aqueous-medium reaction mixture composed of copper(II) nitrate, H3bes biobuffer (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), ammonium hydroxide, and benzenecarboxylic acid, namely, 4-methoxybenzoic (Hfmba) or 4-chlorobenzoic (Hfcba) acid. Two products were isolated from each reaction, namely, 1D coordination polymers [Cu3(μ3-OH)2(μ-fmba)2(fmba)2(H2O)2]n (1) or [Cu2(μ-OH)2(μ-fcba)2]n (2) and discrete tetracopper(II) rings [Cu4(μ-Hbes)3(μ-H2bes)(μ-fmba)]·2H2O (3) or [Cu4(μ-Hbes)3(μ-H2bes)(μ-fcba)]·4H2O (4), respectively. These four compounds were obtained as microcrystalline air-stable solids and characterized by standard methods, including the single-crystal X-ray diffraction. The structures of 1 and 2 feature distinct types of metal-organic chains driven by the μ3- or μ-OH- ligands along with the μ-benzenecarboxylate linkers. The structures of 3 and 4 disclose the chairlike Cu4 rings assembled from four μ-bridging and chelating aminoalcoholate ligands along with μ-benzenecarboxylate moieties playing a core-stabilizing role. Catalytic activity of 1-4 was investigated in two model reactions, namely, (a) the mild oxidation of saturated hydrocarbons with hydrogen peroxide to form alcohols and ketones and (b) the mild carboxylation of alkanes with carbon monoxide, water, and peroxodisulfate to generate carboxylic acids. Cyclohexane and propane were used as model cyclic and gaseous alkanes, while the substrate scope also included cyclopentane, cycloheptane, and cyclooctane. Different reaction parameters were investigated, including an effect of the acid cocatalyst and various selectivity parameters. The obtained total product yields (up to 34% based on C3H8 or up to 47% based on C6H12) in the carboxylation of propane and cyclohexane are remarkable taking into account an inertness of these saturated hydrocarbons and low reaction temperatures (50-60 °C). Apart from notable catalytic activity, this study showcases a novel time-dependent synthetic strategy for the self-assembly of two different Cu(II) compounds from the same reaction mixture.
Collapse
Affiliation(s)
- Ines F M Costa
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Vânia André
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Tiago A Fernandes
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| |
Collapse
|
6
|
Sheng K, Wang R, Tang X, Jagodič M, Jagličić Z, Pang L, Dou JM, Gao ZY, Feng HY, Tung CH, Sun D. A Carbonate-Templated Decanuclear Mn Nanocage with Two Different Silsesquioxane Ligands. Inorg Chem 2021; 60:14866-14871. [PMID: 34533931 DOI: 10.1021/acs.inorgchem.1c02190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mild reaction of the preorganized silsesquioxane precursor with Mn(II) acetate under ambient conditions results in a mixed-valent {MnII6MnIII4} nanocage (SD/Mn10) which is protected by both acyclic trimer [Si3] and cyclic tetramer [Si4]. Serendipitous capture of atmospheric CO2 as a μ5-carbonate anion placed at the center supports the formation of the cluster. The magnetic analysis reveals the strong antiferromagnetic interactions between Mn ions. Moreover, the drop-casting film of SD/Mn10 shows photoelectric activity indicating its great potential as a semiconductor for photoelectric conversion applications.
Collapse
Affiliation(s)
- Kai Sheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China.,School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Ran Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xinde Tang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Marko Jagodič
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Zvonko Jagličić
- Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Laixue Pang
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, China
| | - Jian-Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan, Xinxiang 453007, China
| | - Hua-Yu Feng
- Center of Nanoelectronics and School of Microelectronics, Shandong University, Ji'nan 250100, China
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China
| |
Collapse
|
7
|
Zheng A, Zhou Q, Ding B, Li D, Zhang T, Hou Z. Reduced Amino Acid Schiff Base‐Iron(III) Complexes Catalyzing Oxidation of Cyclohexane with Hydrogen Peroxide. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Zheng
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qingqing Zhou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Bingjie Ding
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Difan Li
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Tong Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zhenshan Hou
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University School of Chemistry and Molecular Engineering Shanghai 200062 China
| |
Collapse
|
8
|
Śliwa EI, Nesterov DS, Kirillova MV, Kłak J, Kirillov AM, Smoleński P. A 3D MOF based on Adamantoid Tetracopper(II) and Aminophosphine Oxide Cages: Structural Features and Magnetic and Catalytic Properties. Inorg Chem 2021; 60:9631-9644. [PMID: 34121384 PMCID: PMC8277165 DOI: 10.1021/acs.inorgchem.1c00868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work describes an unexpected generation of a new 3D metal-organic framework (MOF), [Cu4(μ-Cl)6(μ4-O)Cu(OH)2(μ-PTA═O)4]n·2nCl-EtOH·2.5nH2O, from copper(II) chloride and 1,3,5-triaza-7-phosphaadamantane 7-oxide (PTA═O). The obtained product is composed of diamandoid tetracopper(II) [Cu4(μ-Cl)6(μ4-O)] cages and monocopper(II) [Cu(OH)2] units that are assembled, via the diamandoid μ-PTA═O linkers, into an intricate 3D net with an nbo topology. Magnetic susceptibility measurements on this MOF in the temperature range of 1.8-300 K reveal a ferromagnetic interaction (J = +20 cm-1) between the neighboring copper(II) ions. Single-point DFT calculations disclose a strong delocalization of the spin density over the tetranuclear unit. The magnitude of exchange coupling, predicted from the broken-symmetry DFT studies, is in good agreement with the experimental data. This copper(II) compound also acts as an active catalyst for the mild oxidation and carboxylation of alkanes. The present study provides a unique example of an MOF that is assembled from two different types of adamantoid Cu4 and PTA═O cages, thus contributing to widening a diversity of functional metal-organic frameworks.
Collapse
Affiliation(s)
- Ewelina I Śliwa
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Dmytro S Nesterov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Julia Kłak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.,Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow 117198, Russian Federation
| | - Piotr Smoleński
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Biological Inspirations: Iron Complexes Mimicking the Catechol Dioxygenases. MATERIALS 2021; 14:ma14123250. [PMID: 34204660 PMCID: PMC8231159 DOI: 10.3390/ma14123250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022]
Abstract
Within the broad group of Fe non-heme oxidases, our attention was focused on the catechol 1,2- and 2,3-dioxygenases, which catalyze the oxidative cleavage of aromatic rings. A large group of Fe complexes with N/O ligands, ranging from N3 to N2O2S, was developed to mimic the activity of these enzymes. The Fe complexes discussed in this work can mimic the intradiol/extradiol catechol dioxygenase reaction mechanism. Electronic effects of the substituents in the ligand affect the Lewis acidity of the Fe center, increasing the ability to activate dioxygen and enhancing the catalytic activity of the discussed biomimetic complexes. The ligand architecture, the geometric isomers of the complexes, and the substituent steric effects significantly affect the ability to bind the substrate in a monodentate and bidentate manner. The substrate binding mode determines the preferred mechanism and, consequently, the main conversion products. The preferred mechanism of action can also be affected by the solvents and their ability to form the stable complexes with the Fe center. The electrostatic interactions of micellar media, similar to SDS, also control the intradiol/extradiol mechanisms of the catechol conversion by discussed biomimetics.
Collapse
|
10
|
Astakhov GS, Levitsky MM, Zubavichus YV, Khrustalev VN, Titov AA, Dorovatovskii PV, Smol'yakov AF, Shubina ES, Kirillova MV, Kirillov AM, Bilyachenko AN. Cu 6- and Cu 8-Cage Sil- and Germsesquioxanes: Synthetic and Structural Features, Oxidative Rearrangements, and Catalytic Activity. Inorg Chem 2021; 60:8062-8074. [PMID: 33979518 DOI: 10.1021/acs.inorgchem.1c00586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed" self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.
Collapse
Affiliation(s)
- Grigorii S Astakhov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Yan V Zubavichus
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences (SB RAS) Prosp. Akad., Lavrentieva 5, Novosibirsk 630090, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia, Miklukho-Maklay Street 6, Moscow 117198, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences (RAS), Leninsky Prospect 47, Moscow 119991, Russia
| | - Aleksei A Titov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia
| | - Alexander F Smol'yakov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| | - Marina V Kirillova
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisbon 1049-001, Portugal
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences (RAS), Vavilov Strasse 28, Moscow 119991, Russia
| |
Collapse
|
11
|
Kulakova A, Bilyachenko A, Korlyukov A, Levitsky M, Long J, Guari Y, Larionova J. Novel carbonate/pyridine tetranuclear nickel complex, exhibiting slow relaxation of the magnetization. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Kulakova AN, Nigoghossian K, Félix G, Khrustalev VN, Shubina ES, Long J, Guari Y, Carlos LD, Bilyachenko AN, Larionova J. New Magnetic and Luminescent Dy(III) and Dy(III)/Y(III) Based Tetranuclear Silsesquioxane Cages. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alena N. Kulakova
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | | | - Gautier Félix
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Victor N. Khrustalev
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Elena S. Shubina
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
| | - Jérôme Long
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Yannick Guari
- ICGM Univ. Montpellier CNRS, ENSCM Montpellier France
| | - Luis D. Carlos
- Phantom-g Physics Department and CICECO – Aveiro Institute of Materials University of Aveiro 3810-193 Aveiro Portugal
| | - Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences Vavilova str., 28 Moscow 119991 Russia
- Peoples' Friendship University of Russia RUDN University) Miklukho-Maklay Str., 6 117198 Moscow Russia
| | | |
Collapse
|
13
|
Abstract
The review describes articles that provide data on the synthesis and study of the properties of catalysts for the oxidation of alkanes, olefins, and alcohols. These catalysts are polynuclear complexes of iron, copper, osmium, nickel, manganese, cobalt, vanadium. Such complexes for example are: [Fe2(HPTB)(m-OH)(NO3)2](NO3)2·CH3OH·2H2O, where HPTB-¼N,N,N0,N0-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane; complex [(PhSiO1,5)6]2[CuO]4[NaO0.5]4[dppmO2]2, where dppm-1,1-bis(diphenylphosphino)methane; (2,3-η-1,4-diphenylbut-2-en-1,4-dione)undecacarbonyl triangulotriosmium; phenylsilsesquioxane [(PhSiO1.5)10(CoO)5(NaOH)]; bi- and tri-nuclear oxidovanadium(V) complexes [{VO(OEt)(EtOH)}2(L2)] and [{VO(OMe)(H2O)}3(L3)]·2H2O (L2 = bis(2-hydroxybenzylidene)terephthalohydrazide and L3 = tris(2-hydroxybenzylidene)benzene-1,3,5-tricarbohydrazide); [Mn2L2O3][PF6]2 (L = 1,4,7-trimethyl-1,4,7-triazacyclononane). For comparison, articles are introduced describing catalysts for the oxidation of alkanes and alcohols with peroxides, which are simple metal salts or mononuclear metal complexes. In many cases, polynuclear complexes exhibit higher activity compared to mononuclear complexes and exhibit increased regioselectivity, for example, in the oxidation of linear alkanes. The review contains a description of some of the mechanisms of catalytic reactions. Additionally presented are articles comparing the rates of oxidation of solvents and substrates under oxidizing conditions for various catalyst structures, which allows researchers to conclude about the nature of the oxidizing species. This review is focused on recent works, as well as review articles and own original studies of the authors.
Collapse
|
14
|
de Araújo ML, Correia GA, Carvalho WA, Shul’pina LS, Kozlov YN, Shul’pin GB, Mandelli D. Transformation of biomass derivatives in aqueous medium: Oxidation of ethanol from sugarcane and acetol from biodiesel glycerol catalyzed by Fe3+- H2O2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis? Catalysts 2020. [DOI: 10.3390/catal10121424] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phenol is an important chemical compound since it is a precursor of the industrial production of many materials and useful compounds. Nowadays, phenol is industrially produced from benzene by the multi-step “cumene process”, which is energy consuming due to high temperature and high pressure. Moreover, in the “cumene process”, the highly explosive cumene hydroperoxide is produced as an intermediate. To overcome these disadvantages, it would be useful to develop green alternatives for the synthesis of phenol that are more efficient and environmentally benign. In this regard, great interest is devoted to processes in which the one-step oxidation of benzene to phenol is achieved, thanks to the use of suitable catalysts and oxidant species. This review article discusses the direct oxidation of benzene to phenol in the liquid phase using different catalyst formulations, including homogeneous and heterogeneous catalysts and photocatalysts, and focuses on the reaction mechanisms involved in the selective conversion of benzene to phenol in the liquid phase.
Collapse
|
16
|
Wanna WH, Janmanchi D, Thiyagarajan N, Ramu R, Tsai YF, Yu SSF. Selective Oxidation of Simple Aromatics Catalyzed by Nano-Biomimetic Metal Oxide Catalysts: A Mini Review. Front Chem 2020; 8:589178. [PMID: 33195091 PMCID: PMC7649321 DOI: 10.3389/fchem.2020.589178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 01/14/2023] Open
Abstract
The process of selective oxy-functionalization of hydrocarbons using peroxide, O3, H2O2, O2, and transition metals can be carried out by the reactive oxygen species such as hydroxyl/hydroperoxyl radical and/or metal oxygenated species generated in the catalytic reaction. Thus, a variety of mechanisms have been proposed for the selective catalytic oxidation of various hydrocarbons including light alkanes, olefins, and simple aromatics by the biological metalloproteins and their biomimetics either in their homogeneous or heterogeneous platforms. Most studies involving these metalloproteins are Fe or Cu monooxygenases. The pathways carried out by these metalloenzymes in the oxidation of C-H bonds invoke either radical reaction mechanisms including Fenton's chemistry and hydrogen atom transfer followed by radical rebound reaction mechanism or electrophilic oxygenation/O-atom transfer by metal-oxygen species. In this review, we discuss the metal oxide nano-catalysts obtained from metal salts/molecular precursors (M = Cu, Fe, and V) that can easily form in situ through the oxidation of substrates using H2O2(aq) in CH3CN, and be facilely separated from the reaction mixtures as well as recycled for several times with comparable catalytic efficiency for the highly selective conversion from hydrocarbons including aromatics to oxygenates. The mechanistic insights revealed from the oxy-functionalization of simple aromatics mediated by the novel biomimetic metal oxide materials can pave the way toward developing facile, cost-effective, and highly efficient nano-catalysts for the selective partial oxidation of simple aromatics.
Collapse
Affiliation(s)
| | | | | | - Ravirala Ramu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sree Dattha Institute of Engineering and Science, Hyderabad, India
| | - Yi-Fang Tsai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
17
|
Okhlopkova LS, Poddel’sky AI, Smolyaninov IV, Fukin GK. Triphenylantimony(V) Catecholates Based on 3,6-Di-tert-Butyl-2,5-Dihydroxy-1,4-Benzoquinone. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s107032842005005x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Dos Santos Franco F, Fernandes DS, Do Carmo DR. A modified hybrid silsesquioxane/histidine composite for copper and zinc adsorption and it behavior in the electro-oxidation of ascorbic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110739. [PMID: 32279792 DOI: 10.1016/j.msec.2020.110739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/20/2019] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
Abstract
Octa-(3-chloropropryl)silsesquioxane was chemically modified with histidine (SSQ-H) and characterized by spectroscopy in the infrared region (FT-IR), X-ray diffraction (XRD), X-ray Dispersive Energy Spectroscopy (EDX), Scanning Electron Microscopy (SEM). The analytical properties of SSQ-H were tested regarding of Cu2+ and Zn2+ adsorption and as an electrochemical sensor for the detection of ascorbic acid. The metal sorption results indicate that maximum amount of Cu2+ and Zn2+ adsorbed (Nfmax) were 1.58 × 10-3 and 5.67 × 10-4 mol g-1, respectively. After Cu2+ and Zn2+ ion adsorption and interaction with potassium hexacyanoferrate (III), the investigated materials displayed electroactivity for ascorbic acid detection. The anodic peak currents responses of a graphite paste electrode containing CuHCFSSQ-H presented a linear response in the concentration range of 4.0 × 10-4 to 4.0 × 10-3 mol L-1 for ascorbic acid detection. The limit of detection was of 2.99 × 10-4 mol L-1, with an amperometric sensitivity of 1.69 μA/mol L-1. The intensity of the anodic peak currents of the graphite paste electrode containing ZnHCFSSQ-H in the concentration range of 9.0 × 10-5 to 9.0 × 10-4 mol L-1 also displayed a linear response. The limit of detection was of 6.76 × 10-5 mol L-1, with an amperometric sensitivity of 0.0206 A/mol L-1.
Collapse
Affiliation(s)
- Fernanda Dos Santos Franco
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Física e Química, Av. Brasil, 56, CEP. 15385-000 Ilha Solteira, SP, Brazil
| | - Daniela Silvestrini Fernandes
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Física e Química, Av. Brasil, 56, CEP. 15385-000 Ilha Solteira, SP, Brazil
| | - Devaney Ribeiro Do Carmo
- Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Física e Química, Av. Brasil, 56, CEP. 15385-000 Ilha Solteira, SP, Brazil.
| |
Collapse
|
19
|
Metal Complexes Containing Redox-Active Ligands in Oxidation of Hydrocarbons and Alcohols: A Review. Catalysts 2019. [DOI: 10.3390/catal9121046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ligands are innocent when they allow oxidation states of the central atoms to be defined. A noninnocent (or redox) ligand is a ligand in a metal complex where the oxidation state is not clear. Dioxygen can be a noninnocent species, since it exists in two oxidation states, i.e., superoxide (O2−) and peroxide (O22−). This review is devoted to oxidations of C–H compounds (saturated and aromatic hydrocarbons) and alcohols with peroxides (hydrogen peroxide, tert-butyl hydroperoxide) catalyzed by complexes of transition and nontransition metals containing innocent and noninnocent ligands. In many cases, the oxidation is induced by hydroxyl radicals. The mechanisms of the formation of hydroxyl radicals from H2O2 under the action of transition (iron, copper, vanadium, rhenium, etc.) and nontransition (aluminum, gallium, bismuth, etc.) metal ions are discussed. It has been demonstrated that the participation of the second hydrogen peroxide molecule leads to the rapture of O–O bond, and, as a result, to the facilitation of hydroxyl radical generation. The oxidation of alkanes induced by hydroxyl radicals leads to the formation of relatively unstable alkyl hydroperoxides. The data on regioselectivity in alkane oxidation allowed us to identify an oxidizing species generated in the decomposition of hydrogen peroxide: (hydroxyl radical or another species). The values of the ratio-of-rate constants of the interaction between an oxidizing species and solvent acetonitrile or alkane gives either the kinetic support for the nature of the oxidizing species or establishes the mechanism of the induction of oxidation catalyzed by a concrete compound. In the case of a bulky catalyst molecule, the ratio of hydroxyl radical attack rates upon the acetonitrile molecule and alkane becomes higher. This can be expanded if we assume that the reactions of hydroxyl radicals occur in a cavity inside a voluminous catalyst molecule, where the ratio of the local concentrations of acetonitrile and alkane is higher than in the whole reaction volume. The works of the authors of this review in this field are described in more detail herein.
Collapse
|
20
|
Czerwińska K, Machura B, Kula S, Krompiec S, Erfurt K, Roma-Rodrigues C, Fernandes AR, Shul'pina LS, Ikonnikov NS, Shul'pin GB. Copper(ii) complexes of functionalized 2,2':6',2''-terpyridines and 2,6-di(thiazol-2-yl)pyridine: structure, spectroscopy, cytotoxicity and catalytic activity. Dalton Trans 2018; 46:9591-9604. [PMID: 28702618 DOI: 10.1039/c7dt01244f] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Six new copper(ii) complexes with 2,2':6',2''-terpyridine (4'-Rn-terpy) [1 (R1 = furan-2-yl), 2 (R2 = thiophen-2-yl), and 3 (R3 = 1-methyl-1H-pyrrol-2-yl)] and 2,6-di(thiazol-2-yl)pyridine derivatives (Rn-dtpy) [4 (R1), 5 (R2), and 6 (R3)] have been synthesized by a reaction between copper(ii) chloride and the corresponding ligand. The complexes have been characterized by UV-vis and IR spectroscopy, and their structures have been determined by X-ray analysis. The antiproliferative potential of copper(ii) complexes of 2,2':6',2''-terpyridine and 2,6-di(thiazol-2-yl)pyridine derivatives towards human colorectal (HCT116) and ovarian (A2780) carcinoma as well as towards lung (A549) and breast adenocarcinoma (MCF7) cell lines was examined. Complex 1 and complex 6 were found to have the highest antiproliferative effect on A2780 ovarian carcinoma cells, particularly when compared with complex 2, 3 with no antiproliferative effect. The order of cytotoxicity in this cell line is 6 > 1 > 5 > 4 > 2 ≈ 3. Complex 2 seems to be much more specific towards colorectal carcinoma HCT116 and lung adenocarcinoma A549 cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation. The specificity towards different types of cell lines and the low cytotoxic activity towards healthy cells are of particular interest and are a positive feature for further developments. Complexes 1-6 were also tested in the oxidation of alkanes and alcohols with hydrogen peroxide and tert-butyl-hydroperoxide (TBHP). The most active catalyst 4 gave, after 120 min, 0.105 M of cyclohexanol + cyclohexanone after reduction with PPh3. This concentration corresponds to a yield of 23% and TON = 210. Oxidation of cis-1,2-dimethylcyclohexane with m-CPBA catalyzed by 4 in the presence of HNO3 gave a product of a stereoselective reaction (trans/cis = 0.47). Oxidation of secondary alcohols afforded the target ketones in yields up to 98% and TON = 630.
Collapse
Affiliation(s)
- Katarzyna Czerwińska
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland.
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland.
| | - Slawomir Kula
- Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland
| | - Stanisław Krompiec
- Department of Inorganic, Organometallic Chemistry and Catalysis, Institute of Chemistry, University of Silesia, 9th Szkolna St, 40-006 Katowice, Poland
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ulitsa Vavilova, dom 28, Moscow 119991, Russia
| | - Nikolay S Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ulitsa Vavilova, dom 28, Moscow 119991, Russia
| | - Georgiy B Shul'pin
- Department of Kinetics and Catalysis, Semenov Institute of Chemical Physics, Russian Academy of Sciences, ulitsa Kosygina, dom 4, Moscow 119991, Russia. and Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
21
|
Family of penta- and hexanuclear metallasilsesquioxanes: Synthesis, structure and catalytic properties in oxidations. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.10.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Bilyachenko AN, Levitsky MM, Korlyukov AA, Khrustalev VN, Zubavichus YV, Shul'pina LS, Shubina ES, Vologzhanina AV, Shul'pin GB. Heptanuclear Cage CuII-Silsesquioxanes: Synthesis, Structure and Catalytic Activity. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey N. Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Mikhail M. Levitsky
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
- Pirogov Russian National Research Medical University; Ostrovitianov Str. 1 117997 Moscow Russia
| | - Victor N. Khrustalev
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Yan V. Zubavichus
- National Research Center “Kurchatov Institute”; Akademika Kurchatova Pl. 1 123182 Moscow Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Elena S. Shubina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Anna V. Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova Str. 28 119991 Moscow Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics; Russian Academy of Sciences; ul. Kosygina 4 119991 Moscow Russia
- Plekhanov Russian University of Economics; Stremyannyi pereulok, dom 36 117997 Moscow Russia
| |
Collapse
|
23
|
Yagafarov NZ, Muratov KM, Biriukov K, Usanov DL, Chusova O, Perekalin DS, Chusov D. Ruthenium-Catalyzed Reductive Amidation without an External Hydrogen Source. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niyaz Z. Yagafarov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Karim M. Muratov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Klim Biriukov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Dmitry L. Usanov
- Department of Chemistry and Chemical Biology; Harvard University; 12 Oxford Street 02138 Cambridge MA USA
| | - Olga Chusova
- Faculty of Science; RUDN University; 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| | - Dmitry S. Perekalin
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
| | - Denis Chusov
- Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences; Vavilova St. 28 119991 Moscow Russian Federation
- Faculty of Science; RUDN University; 6 Miklukho-Maklaya St. 117198 Moscow Russian Federation
| |
Collapse
|
24
|
Bilyachenko AN, Khrustalev VN, Zubavichus YV, Shul'pina LS, Kulakova AN, Bantreil X, Lamaty F, Levitsky MM, Gutsul EI, Shubina ES, Shul'pin GB. Heptanuclear Fe 5Cu 2-Phenylgermsesquioxane containing 2,2'-Bipyridine: Synthesis, Structure, and Catalytic Activity in Oxidation of C-H Compounds. Inorg Chem 2018; 57:528-534. [PMID: 29232118 DOI: 10.1021/acs.inorgchem.7b02881] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new representative of an unusual family of metallagermaniumsesquioxanes, namely the heterometallic cagelike phenylgermsesquioxane (PhGeO2)12Cu2Fe5(O)OH(PhGe)2O5(bipy)2 (2), was synthesized and structurally characterized. Fe(III) ions of the complex are coordinated by oxa ligands: (i) cyclic (PhGeO2)12 and acyclic (Ph2Ge2O5) germoxanolates and (ii) O2- and (iii) HO- moieties. In turn, Cu(II) ions are coordinated by both oxa (germoxanolates) and aza ligands (2,2'-bipyridines). This "hetero-type" of ligation gives in sum an attractive pagoda-like molecular architecture of the complex 2. Product 2 showed a high catalytic activity in the oxidation of alkanes to the corresponding alkyl hydroperoxides (in yields up to 30%) and alcohols (in yields up to 100%) and in the oxidative formation of benzamides from alcohols (catalyst loading down to 0.4 mol % in Cu/Fe).
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, 123182 Moscow, Russia
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier ENSCM, Site Triolet , Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, 119991 Moscow, Russia
| | - Georgiy B Shul'pin
- Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow 119991, Russia.,Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow 117997, Russia
| |
Collapse
|
25
|
Kulakova AN, Bilyachenko AN, Korlyukov AA, Long J, Levitsky MM, Shubina ES, Guari Y, Larionova J. New Ni4Na2-phenylgermsesquioxane architecture: synthesis, structure and slow dynamic behaviour. Dalton Trans 2018; 47:6893-6897. [DOI: 10.1039/c8dt00900g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The first Ni(ii)-based germaniumsesquioxane cage compound [(PhGeO1.5)10(NiO)4(NaO0.5)2] presents a unique sandwich-like structure and exhibits slow dynamics of the magnetization.
Collapse
Affiliation(s)
- Alena N. Kulakova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexey N. Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexander A. Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Pirogov Russian National Research Medical University
- 117997 Moscow
| | - Jérôme Long
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| | - Mikhail M. Levitsky
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Elena S. Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Yannick Guari
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| | - Joulia Larionova
- Institut Charles Gerhardt
- UMR5253
- University of Montpellier
- ENSCM
- CNRS
| |
Collapse
|
26
|
Shul'pin GB, Vinogradov MM, Shul'pina LS. Oxidative functionalization of C–H compounds induced by the extremely efficient osmium catalysts (a review). Catal Sci Technol 2018. [DOI: 10.1039/c8cy00659h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, osmium complexes have found applications not only in thecis-hydroxylation of olefins but also very efficient in the oxygenation of C–H compounds (saturated and aromatic hydrocarbons and alcohols) by hydrogen peroxide as well as organic peroxides.
Collapse
Affiliation(s)
- Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russia
- Plekhanov Russian University of Economics
| | - Mikhail M. Vinogradov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| | - Lidia S. Shul'pina
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|
27
|
Kulakova AN, Bilyachenko AN, Levitsky MM, Khrustalev VN, Korlyukov AA, Zubavichus YV, Dorovatovskii PV, Lamaty F, Bantreil X, Villemejeanne B, Martinez J, Shul'pina LS, Shubina ES, Gutsul EI, Mikhailov IA, Ikonnikov NS, Tsareva US, Shul'pin GB. Si 10Cu 6N 4 Cage Hexacoppersilsesquioxanes Containing N Ligands: Synthesis, Structure, and High Catalytic Activity in Peroxide Oxidations. Inorg Chem 2017; 56:15026-15040. [PMID: 29185729 DOI: 10.1021/acs.inorgchem.7b02320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis, composition, and catalytic properties of a new family of hexanuclear Cu(II)-based phenylsilsesquioxanes are described here. Structural studies of 17 synthesized compounds revealed the general principle underlying their molecular topology: viz., a central metal oxide layer consisting of two Cu3 trimers is coordinated by two cyclic [PhSiO1.5]5 siloxanolate ligands to form a skewed sandwich architecture with the composition [(PhSiO1.5)10(CuO)6]2+. In addition to this O ligation by the siloxanolate rings, two opposite copper ions are additionally coordinated by the nitrogen atoms of corresponding N ligand(s), such as 2,2'-bipyridine (compounds 1-9), 1,10-phenanthroline (compounds 10-13), mixed 1,10-phenanthroline/2,2'-bipyridine (compound 14), or bathophenanthroline (compounds 15-17). Finally, the charge balance is maintained by two HO- (compounds 1-7, 10-13, and 15-17), two H3CO- (compound 8), or two CH3COO- (compounds 9 and 14) anions. Complexes 1 and 10 exhibited a high activity in the oxidative amidation oxidation of alcohols. Compounds 1, 10, and 15 are very efficient homogeneous catalysts in the oxidation of alkanes and alcohols with peroxides.
Collapse
Affiliation(s)
- Alena N Kulakova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexey N Bilyachenko
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Mikhail M Levitsky
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Str., 6, Moscow, Russia
| | - Alexander A Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, Moscow, Russia
| | - Yan V Zubavichus
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Akademika Kurchatova pl., 1, Moscow, Russia
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Benoît Villemejeanne
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Lidia S Shul'pina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Elena S Shubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Evgeniy I Gutsul
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Igor A Mikhailov
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia
| | - Nikolay S Ikonnikov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Ul'yana S Tsareva
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Vavilov Str., 28, Moscow, Russia
| | - Georgiy B Shul'pin
- Plekhanov Russian University of Economics , Stremyannyi pereulok, dom 36, Moscow, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences , ulitsa Kosygina, dom 4, Moscow, Russia
| |
Collapse
|
28
|
Bilyachenko AN, Kulakova AN, Levitsky MM, Korlyukov AA, Khrustalev VN, Vologzhanina AV, Titov AA, Dorovatovskii PV, Shul'pina LS, Lamaty F, Bantreil X, Villemejeanne B, Ruiz C, Martinez J, Shubina ES, Shul'pin GB. Ionic Complexes of Tetra- and Nonanuclear Cage Copper(II) Phenylsilsesquioxanes: Synthesis and High Activity in Oxidative Catalysis. ChemCatChem 2017. [DOI: 10.1002/cctc.201701063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Alexey N. Bilyachenko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Alena N. Kulakova
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Mikhail M. Levitsky
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
- Pirogov Russian National Research Medical University; Ostrovitianov str. 1 117997 Moscow Russia
| | - Victor N. Khrustalev
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Anna V. Vologzhanina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Aleksei A. Titov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
- Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklay Str. 6 117198 Moscow Russia
| | - Pavel V. Dorovatovskii
- National Research Center “Kurchatov Institute”; Akademika Kurchatova pl. 1 123098 Moscow Russia
| | - Lidia S. Shul'pina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; ENSCM; Site Triolet Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; ENSCM; Site Triolet Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Benoît Villemejeanne
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; ENSCM; Site Triolet Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Cindy Ruiz
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; ENSCM; Site Triolet Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM); UMR 5247; CNRS; Université de Montpellier; ENSCM; Site Triolet Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Elena S. Shubina
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilov str. 28 119991 Moscow Russia
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics; Russian Academy of Sciences; Ulitsa Kosygina 4 Moscow 119991 Russia
- Plekhanov Russian University of Economics; Stremyannyi pereulok 36 Moscow 117997 Russia
| |
Collapse
|
29
|
Bilyachenko AN, Yalymov A, Dronova M, Korlyukov AA, Vologzhanina AV, Es'kova MA, Long J, Larionova J, Guari Y, Dorovatovskii PV, Shubina ES, Levitsky MM. Family of Polynuclear Nickel Cagelike Phenylsilsesquioxanes; Features of Periodic Networks and Magnetic Properties. Inorg Chem 2017; 56:12751-12763. [PMID: 29048173 DOI: 10.1021/acs.inorgchem.7b01436] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new family of bi-, tetra-, penta-, and hexanickel cagelike phenylsilsesquioxanes 1-6 was obtained by self-assembly and transmetalation procedures. Their crystal structures were established by single-crystal X-ray analysis, and features of crystal packing relevant to the network formation were studied by a topological analysis. Compounds 1, 2, and 4 are isolated architectures, while 3, 5, and 6 present extended 1D and 3D networks. The investigation of magnetic properties revealed the presence of ferro- (1 and 3-5) or antiferromagnetic (2 and 6) interactions between Ni(II) ions, giving rise in the most cases (1, 2, and 4-6) to the presence of a slow relaxation of the magnetization, which can originate from the spin frustration.
Collapse
Affiliation(s)
- Alexey N Bilyachenko
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia.,Peoples' Friendship University of Russia , Miklukho-Maklay Str., 6, 117198 Moscow, Russia
| | - Alexey Yalymov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Marina Dronova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Alexander A Korlyukov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia.,Pirogov Russian National Research Medical University , Ostrovitianov str., 1, 117997 Moscow, Russia
| | - Anna V Vologzhanina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Marina A Es'kova
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Jérôme Long
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Joulia Larionova
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Yannick Guari
- Institut Charles Gerhardt de Montpellier (ICGM), UMR5253, Equipe IMNO, Université de Montpellier , Site Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" Akademika Kurchatova pl., 1, 123098 Moscow, Russia
| | - Elena S Shubina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| | - Mikhail M Levitsky
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences , Vavilov str., 28, 119991 Moscow, Russia
| |
Collapse
|
30
|
High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study. CRYSTALS 2017. [DOI: 10.3390/cryst7110325] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Affiliation(s)
- Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard St. Louis, MO 63121 USA
| |
Collapse
|
32
|
Mohammad A, Chandra P, Ghosh T, Carraro M, Mobin SM. Facile Access to Amides from Oxygenated or Unsaturated Organic Compounds by Metal Oxide Nanocatalysts Derived from Single-Source Molecular Precursors. Inorg Chem 2017; 56:10596-10608. [PMID: 28825791 DOI: 10.1021/acs.inorgchem.7b01576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidative amidation is a valuable process for the transformation of oxygenated organic compounds to valuable amides. However, the reaction is severely limited by the use of an expensive catalyst and limited substrate scope. To circumvent these limitations, designing a transition-metal-based nanocatalyst via more straightforward and economical methodology with superior catalytic performances with broad substrate scope is desirable. To resolve the aforementioned issues, we report a facile method for the synthesis of nanocatalysts NiO and CuO by the sol-gel-assisted thermal decomposition of complexes [Ni(hep-H)(H2O)4]SO4 (SSMP-1) and [Cu(μ-hep)(BA)]2 (SSMP-2) [hep-H = 2-(2-hydroxylethyl)pyridine; BA = benzoic acid] as single-source molecular precursors (SSMPs) for the oxidative amidation of benzyl alcohol, benzaldehyde, and BA by using N,N-dimethylformamide (DMF) as the solvent and as an amine source, in the presence of tert-butylhydroperoxide (TBHP) as the oxidant, at T = 80 °C. In addition to nanocatalysts NiO and CuO, our previously reported Co/CoO nanocatalyst (CoNC), derived from the complex [CoII(hep-H)(H2O)4]SO4 (A) as an SSMP, was also explored for the aforementioned reaction. Also, we have carefully investigated the difference in the catalytic performance of Co-, Ni-, and Cu-based nanoparticles synthesized from the SSMP for the conversion of various oxygenated and unsaturated organic compounds to their respective amides. Among all, CuO showed an optimum catalytic performance for the oxidative amidation of various oxygenated and unsaturated organic compounds with a broad reaction scope. Finally, CuO can be recovered unaltered and reused for several (six times) recycles without any loss in catalytic activity.
Collapse
Affiliation(s)
| | | | | | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR , Via Marzolo 1, 35131 Padova, Italy
| | | |
Collapse
|
33
|
Bilyachenko AN, Korlyukov AA, Vologzhanina AV, Khrustalev VN, Kulakova AN, Long J, Larionova J, Guari Y, Dronova MS, Tsareva US, Dorovatovskii PV, Shubina ES, Levitsky MM. Tuning linkage isomerism and magnetic properties of bi- and tri-metallic cage silsesquioxanes by cation and solvent effects. Dalton Trans 2017; 46:12935-12949. [DOI: 10.1039/c7dt02017a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of the polynuclear cage metallasilsesquioxane [(PhSiO1.5)12(CuO)4(NaO0.5)4(n-BuOH)8] with a globular structure to act as a stable building block of hybrid materials with respect to the substitution of sodium cations and terminal butanol molecules was confirmed.
Collapse
Affiliation(s)
- Alexey N. Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Peoples’ Friendship University of Russia (RUDN University)
- 117198 Moscow
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
- Pirogov Russian National Research Medical University
- 117997 Moscow
| | - Anna V. Vologzhanina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Alena N. Kulakova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Jérôme Long
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Joulia Larionova
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Yannick Guari
- Institut Charles Gerhardt
- UMR5253
- Ingénierie Moléculaire et Nano-Objets
- Université de Montpellier
- Univ. Montpellier
| | - Marina S. Dronova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Ulyana S. Tsareva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | | | - Elena S. Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Mikhail M. Levitsky
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| |
Collapse
|