1
|
Russo E, Sgarbossa P, Gelosa S, Copelli S, Sieni E, Barozzi M. Adsorption of Heavy Metal Ions on Alginate-Based Magnetic Nanocomposite Adsorbent Beads. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1942. [PMID: 38730748 PMCID: PMC11084431 DOI: 10.3390/ma17091942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Graphene oxide and its magnetic nanoparticle-based composites are a well-known tool to remove heavy metals from wastewater. Unfortunately, one of the major issues in handling such small particles consists of their difficult removal from treated wastewater (even when their magnetic properties are exploited), due to their very small diameter. One possible way to overcome this problem is to embed them in a macroscopic biopolymer matrix, such as alginate or chitosan beads. In this way, the adsorbent becomes easier to handle and can be used to build, for example, a packed column, as in a traditional industrial adsorber. In this work, the removal performances of two different embedded magnetic nanocomposite adsorbents (MNAs) are discussed. The first type of MNA is based on ferrite magnetic nanoparticles (MNPs) generated by coprecipitation using iron(II/III) salts and ammonium hydroxide, while the second is based on a 2D material composed of MNP-decorated graphene oxide. Both MNAs were embedded in cross-linked alginate beads and used to treat artificial water contaminated with chromium(III), nickel(II), and copper(II) in different concentrations. The yield of removal and differences between MNAs and non-embedded magnetic nanomaterials are also discussed. From the results, it was found that the time to reach the adsorption equilibrium is higher when compared to that of the nanomaterials only, due to the lower surface/volume ratio of the beads, but the adsorption capacity is higher, due to the additional interaction with alginate.
Collapse
Affiliation(s)
- Eleonora Russo
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (E.R.); (P.S.)
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy; (E.R.); (P.S.)
| | - Simone Gelosa
- Department of Chemistry Materials and Chemical Engineering, Politecnico of Milan, Via Luigi Mancinelli 7, 20131 Milan, Italy;
| | - Sabrina Copelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 9, 22100 Como, Italy;
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Via Jean Henry Dunant 3, 21100 Varese, Italy
| | - Marco Barozzi
- Department of Science and High Technology, University of Insubria, Via Valleggio 9, 22100 Como, Italy;
| |
Collapse
|
2
|
Diodati LE, Liu S, Rinaldi-Ramos CM, Sumerlin BS. Magnetic Nanoparticles Improve Flow Rate and Enable Self-Healing in Covalent Adaptable Networks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384942 DOI: 10.1021/acsami.3c06329] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Covalent adaptable networks (CANs) combine the mechanical and chemical stability of thermosets with the reprocessability of thermoplastics through the incorporation of stimuli-responsive dynamic crosslinks. To allow for processing through induction heating, we have created associative CANs that include fillers in the polymer matrix for efficient heat transfer. While the inclusion of inorganic fillers often decreases flow rate in CANs and complicates reprocessing of the material, the presence of Fe3O4 nanoparticles had no detrimental effect on flow behavior in a vinylogous urethane vitrimer, an observation we attribute to the catalytic nature of nanoparticles on the dynamic exchange chemistry. We employed two methods of nanoparticle incorporation: blending bare nanoparticles and crosslinking chemically modified nanoparticles. The vitrimers with covalently crosslinked nanoparticles exhibited a decreased relaxation time compared to those with blended nanoparticles. The magnetic character of the Fe3O4 nanoparticles enabled self-healing of the vitrimer composite materials upon exposure to an alternating electromagnetic field during induction heating.
Collapse
Affiliation(s)
- Lily E Diodati
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sitong Liu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Chandra Saikia T, Borgohain X, Iraqui S, Rashid MH. Template-Less and Surfactant-Less Synthesis of CeO 2 Nanostructures for Catalytic Application in Ipso-hydroxylation of Aryl Boronic Acids and the aza-Michael Reaction. ACS OMEGA 2022; 7:42126-42137. [PMID: 36440121 PMCID: PMC9685755 DOI: 10.1021/acsomega.2c04614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Due to its excellent physicochemical properties, CeO2 has found great importance as an electrochemical and in electronics, photocatalysis, sensing, and heterogeneous catalysis. Herein, we report the surfactant-less and template-less synthesis of CeO2 nanostructures by the hydrothermal method. The synthesized CeO2 nanostructures have been characterized in detail by electron microscopy, spectroscopy, diffractometry, and other analytical methods. The XRD studies revealed the formation of pure crystalline CeO2, possessing a cubic fluorite structure with an average crystallite size of 15.6 to 16.4 nm. Electron microscopy studies reveal the formation of cube-shaped CeO2 nanostructures with sizes below 25 nm. The cube-shaped CeO2 nanostructures exhibited a higher BET surface area compared to their bulk counterparts. The XPS analysis has confirmed the existence of Ce in the mixed oxidation states of +3 and +4, while O is present as O2- in the sample. The as-synthesized CeO2 nanostructures exhibit excellent catalytic activity in both the ipso-hydroxylation of aryl boronic acids and the aza-Michael reaction. The analysis of the used catalyst has confirmed its stability under the reported reaction conditions. The catalysts retain their catalytic activity up to the fifth run in both types of reactions, which is economically beneficial for industrial application.
Collapse
|
4
|
Chen S, Feng Y, Zhang Z, Li X, Zhang J, Zhao J. Catalyzed Michael addition, polycondensation, and the related performance of Diels–Alder self‐healing crosslinked polyamides. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shuo Chen
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Yu Feng
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Zhi‐Yuan Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Xiang‐Yuan Li
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jun‐Ying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jing‐Bo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education; College of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
5
|
Verma S, Kujur S, Sharma R, Pathak DD. Cucurbit[6]uril-Supported Fe 3O 4 Magnetic Nanoparticles Catalyzed Green and Sustainable Synthesis of 2-Substituted Benzimidazoles via Acceptorless Dehydrogenative Coupling. ACS OMEGA 2022; 7:9754-9764. [PMID: 35350370 PMCID: PMC8945128 DOI: 10.1021/acsomega.1c07350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/25/2022] [Indexed: 06/02/2023]
Abstract
A new composite, cucurbit[6]uril (CB[6])-supported magnetic nanoparticles, Fe3O4-CB[6], was synthesized via a co-precipitation method in air and fully characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, inductively coupled plasma-mass spectrometry, and vibrating sample magnetometry techniques. It has been found to be a highly efficient, economic, and sustainable heterogeneous catalyst and has been employed for the first time for the synthesis of a series of biologically important 2-substituted benzimidazoles from various benzyl alcohols and 1,2-diaminobenzenes under solvent-free conditions via acceptorless dehydrogenative coupling to afford the corresponding products in good to excellent yields (68-94%). The magnetic nature of the nanocomposite facilitates the facile recovery of the catalyst from the reaction mixture by an external magnet. The catalyst can be reused up to five times with negligible loss in its catalytic activity. All the isolated products were characterized by 1H and 13C{1H} NMR spectroscopy.
Collapse
Affiliation(s)
- Shruti Verma
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Shelly Kujur
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Richa Sharma
- Department
of Chemistry, Faculty of Science, Dayalbagh
Educational Institute, Dayalbagh, Agra 282005, India
| | - Devendra D. Pathak
- Department
of Chemistry and Chemical Biology, Indian
Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| |
Collapse
|
6
|
Kumar B, Reddy MS, Dwivedi KD, Dahiya A, Babu JN, Chowhan LR. Synthesis of in situ immobilized iron oxide nanoparticles (Fe
3
O
4
) on microcrystalline cellulose: Ecofriendly and recyclable catalyst for Michael addition. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bhupender Kumar
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| | - Marri Sameer Reddy
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| | | | - Amarjeet Dahiya
- Department of Chemical Sciences, School of Basic Sciences Central University of Punjab Bathinda Punjab India
| | - J. Nagendra Babu
- Department of Chemical Sciences, School of Basic Sciences Central University of Punjab Bathinda Punjab India
| | - L. Raju Chowhan
- School of Applied Material Sciences Central University of Gujarat Gandhinagar India
| |
Collapse
|
7
|
Amir M, Ali W, Baykal A, Khan GS. Development of highly active, chemically stable and recyclable magnetic nanophotocatalyst based on plasmonic silver nanoparticles and photosensitive trans‐3‐(trans‐4‐imidazolyl) acrylic acid molecules. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Amir
- Centre for Sensors, Instrumentation, and Cyber‐physical System Engineering (SeNSE) New Delhi India
| | - Wazed Ali
- Department of Textiles and Fibre Engineering Indian Institute of Technology Delhi New Delhi India
| | - Abdulhadi Baykal
- Department of Nano‐Medicine Research, Institute for Research & Medical Consultation (IRMC) Imam Abdulrahman Bin Faisal University Dammam Saudi Arabia
| | - Gufran Sayeed Khan
- Centre for Sensors, Instrumentation, and Cyber‐physical System Engineering (SeNSE) New Delhi India
| |
Collapse
|
8
|
Structurally and Compositionally Tunable Absorption Properties of AgCl@AgAu Nanocatalysts for Plasmonic Photocatalytic Degradation of Environmental Pollutants. Catalysts 2020. [DOI: 10.3390/catal10040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Composite nanomaterials having Ag nanoparticles (NPs) that decorate nanostructured AgCl (Ag/AgCl) are promising as plasmonic photocatalysts because of the visible-light absorption of Ag NPs. However, the narrow absorption bands of Ag NPs near 400 nm cause inefficient absorption in the visible range and, consequently, unsatisfactory photocatalytic activity of Ag/AgCl nanomaterials. In this study, we introduce a new class of AgCl-based photocatalysts that are decorated with bimetallic Ag and Au NPs (AgCl@AgAu NPs) for visible-light-driven photocatalytic degradation of organic pollutants. Polyvinylpyrrolidone induces selective reduction of noble metal precursors on AgCl while leaving AgCl intact. The extended composition of the decorating NPs red-shifts the absorption band to 550–650 nm, which allows the catalysts to take advantage of more energy in the visible range for improved efficiency. Furthermore, we control the structures of the AgCl@AgAu NPs, and investigate their correlation with photocatalytic properties. The versatility, chemical stability, and practical application of the AgCl@AgAu NPs are demonstrated using various organic pollutants, recycling experiments, and natural aqueous media, respectively. Our fundamental investigation on the synthesis and applications of AgCl-based nano-photocatalysts is highly valuable for designing plasmonic photocatalysts and expanding their utilization.
Collapse
|
9
|
Innovative catalysis in Michael addition reactions for C-X bond formation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Chowdhury R, Khan A, Rashid MH. Green synthesis of CuO nanoparticles using Lantana camara flower extract and their potential catalytic activity towards the aza-Michael reaction. RSC Adv 2020; 10:14374-14385. [PMID: 35498484 PMCID: PMC9051883 DOI: 10.1039/d0ra01479f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Aza-Michael addition is one of the most exploited reactions in organic chemistry. It is regarded as one of the most popular and efficient methods for the creation of the carbon–nitrogen bond, which is a key feature of many bioactive molecules. Herein, we report the synthesis of CuO nanoparticles by an alkaline hydrolysis process in the presence of the flower extract of Lantana camara, an invasive weed, followed by calcination in air at 400 °C. Microscopic results indicated that the plant extract played an important role in the modulation of the size and shape of the product. In the presence of extract, porous CuO nanostructures are formed. While mostly aggregated rod-shaped CuO nanostructures are formed in the absence of extract. The products are pure and highly crystalline possessing the monoclinic phase. The CuO nanoparticles have been used as a catalyst in the aza-Michael addition reaction in aqueous medium under ultrasound vibration. The product yield is excellent and the catalyst is reusable up to the fifth cycle. The catalyst system can be extended to various substituted substrates with excellent to moderate yields. An easy and convenient synthesis process is reported for the synthesis of CuO nanoparticles using plant extract for use as a catalyst in the aza-Michael addition reaction.![]()
Collapse
Affiliation(s)
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | | |
Collapse
|
11
|
Dutt S, Goel V, Garg N, Choudhury D, Mallick D, Tyagi V. Biocatalytic Aza‐Michael Addition of Aromatic Amines to Enone Using α‐Amylase in Water. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901254] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunil Dutt
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Vanshita Goel
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Neha Garg
- School of Basic SciencesIndian Institute of Technology Mandi 175005, Himachal Pradesh India
| | - Diptiman Choudhury
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| | - Dibyendu Mallick
- Department of ChemistryPresidency University Kolkata 700073, West Bengal India
| | - Vikas Tyagi
- School of Chemistry and BiochemistryThapar Institute of Engineering and Technology Patiala 147004, Punjab India
| |
Collapse
|
12
|
Popescu RC, Andronescu E, Vasile BS. Recent Advances in Magnetite Nanoparticle Functionalization for Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1791. [PMID: 31888236 PMCID: PMC6956201 DOI: 10.3390/nano9121791] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Functionalization of nanomaterials can enhance and modulate their properties and behaviour, enabling characteristics suitable for medical applications. Magnetite (Fe3O4) nanoparticles are one of the most popular types of nanomaterials used in this field, and many technologies being already translated in clinical practice. This article makes a summary of the surface modification and functionalization approaches presented lately in the scientific literature for improving or modulating magnetite nanoparticles for their applications in nanomedicine.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
- Department of Life and Environmental Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| | - Bogdan Stefan Vasile
- National Research Center for Micro and Nanomaterials, Department of Science and Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 060042 Bucharest, Romania; (R.C.P.); (E.A.)
| |
Collapse
|
13
|
Hakiki A, Kerbadou RM, Boukoussa B, Zahmani HH, Launay F, Pailleret A, Pillier F, Hacini S, Bengueddach A, Hamacha R. Catalytic behavior of copper–amine complex supported on mesoporous silica SBA-15 toward mono-Aza-Michael addition: role of amine groups. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01139-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Esmaeilnezhad E, Karimian M, Choi HJ. Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Amidation of fatty acid methyl ester using metal oxides and hydroxides as catalysts. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00706-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Komeily-Nia Z, Montazer M, Heidarian P, Nasri-Nasrabadi B. Smart photoactive soft materials for environmental cleaning and energy production through incorporation of nanophotocatalyst on polymers and textiles. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zahra Komeily-Nia
- Deakin University; Institute for Frontier Materials; Geelong Australia
| | - Majid Montazer
- Textile Department; Amirkabir University of Technology; Tehran Iran
| | | | | |
Collapse
|
17
|
Abstract
Heterogeneous catalytic systems based on the use of stimuli-responsive materials can be switched from an “on” active state to an “off” inactive state, which contributes to endowing the catalysts with unique functional properties, such as adaptability, recyclability and precise spatial and temporal control on different types of chemical reactions. All these properties constitute a step toward the development of nature-inspired catalytic systems. Even if this is a niche area in the field of catalysis, it is possible to find in literature intriguing examples of dynamic catalysts, whose systematic analysis and review are still lacking. The aim of this work is to examine the recent developments of stimuli-responsive heterogeneous catalytic systems from the viewpoint of different approaches that have been proposed to obtain a dynamic control of catalytic efficiency. Because of the variety of reactions and conditions, it is difficult to make a quantitative comparison between the efficiencies of the considered systems, but the analysis of the different strategies can inspire the preparation of new smart catalytic systems.
Collapse
|