1
|
Feng X, Zeng J, Zhu J, Song K, Zhou X, Guo X, Xie C, Shi JW. Gd-modified Mn-Co oxides derived from layered double hydroxides for improved catalytic activity and H 2O/SO 2 tolerance in NH 3-SCR of NO x reaction. J Colloid Interface Sci 2024; 659:1063-1071. [PMID: 38212197 DOI: 10.1016/j.jcis.2024.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024]
Abstract
Metal oxides derived from layered double hydroxides (LDHs) are expected to obtain low-temperature denitrification (de-NOx) catalysts with high catalytic activity and H2O/SO2 tolerance in the selective catalytic reduction (SCR) of NOx with NH3. In current work, we successfully prepared Gd-modified Mn-Co metal oxides derived from Gd-modified Mn-Co LDHs. The resultant Gd-modified Mn-Co metal oxides exhibit excellent catalytic activity and high H2O/SO2 tolerance in the NH3-SCR de-NOx reaction. The reasons for the enhancement can be ascribed to the unique surface physicochemical properties inherited from LDHs and the modification of Gd, which increase the specific surface area, improve the relative content of Mn4+ and Co3+ on the surface, enhance the number of acidic sites, strengthen the reducibility of catalyst, resulting in the enhanced catalytic activity and H2O/SO2 tolerance. Additionally, it is demonstrated that the NH3-SCR de-NOx reaction occurred on the surface of Gd-modified Mn-Co oxides followed both Eley-Rideal (E-R) and Langmuir-Hinshelwood (L-H) mechanisms. This study provides us with a design approach to promote catalytic activity and H2O/SO2 tolerance through morphology control and rare earth modification.
Collapse
Affiliation(s)
- Xiangbo Feng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jialing Zeng
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, Shaanxi, China
| | - Jianru Zhu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Kunli Song
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xinya Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xuanlin Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Chong Xie
- Xi'an Key Laboratory of New Energy Materials and Devices, Institute of Advanced Electrochemical Energy, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
2
|
Luo J, Xu S, Xu H, Zhang Z, Chen X, Li M, Tie Y, Zhang H, Chen G, Jiang C. Overview of mechanisms of Fe-based catalysts for the selective catalytic reduction of NO x with NH 3 at low temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14424-14465. [PMID: 38291211 DOI: 10.1007/s11356-024-32113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
With the increasingly stringent control of NOx emissions, NH3-SCR, one of the most effective de-NOx technologies for removing NOx, has been widely employed to eliminate NOx from automobile exhaust and industrial production. Researchers have favored iron-based catalysts for their low cost, high activity, and excellent de-NOx performance. This paper takes a new perspective to review the research progress of iron-based catalysts. The influence of the chemical form of single iron-based catalysts on their performance was investigated. In the section on composite iron-based catalysts, detailed reviews were conducted on the effects of synergistic interactions between iron and other elements on catalytic performance. Regarding loaded iron-based catalysts, the catalytic performance of iron-based catalysts on different carriers was systematically examined. In the section on iron-based catalysts with novel structures, the effects of the morphology and crystallinity of nanomaterials on catalytic performance were analyzed. Additionally, the reaction mechanism and poisoning mechanism of iron-based catalysts were elucidated. In conclusion, the paper delved into the prospects and future directions of iron-based catalysts, aiming to provide ideas for the development of iron-based catalysts with better application prospects. The comprehensive review underscores the significance of iron-based catalysts in the realm of de-NOx technologies, shedding light on their diverse forms and applications. The hope is that this paper will serve as a valuable resource, guiding future endeavors in the development of advanced iron-based catalysts.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China.
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| | - Xiaofeng Chen
- Guangxi Automobile Group Co., Ltd, Liuzhou, 545007, China
| | - Mingsen Li
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yuanhao Tie
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Guiguang Chen
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
3
|
Nie W, Yan X, Yu F, Bao Q, Li N, Zhou W, Niu W, Tian Q. Study on the effect of Ce-Cu doping on Mn/γ-Al 2O 3 catalyst for selective catalytic reduction in NO with NH 3. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01582-z. [PMID: 37133769 DOI: 10.1007/s10653-023-01582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
A series of Mn/γ-Al2O3, Mn-Cu/γ-Al2O3, Mn-Ce/γ-Al2O3 and Mn-Ce-Cu/γ-Al2O3 catalysts were prepared by equal volume impregnation. The denitrification effects of the different catalysts were studied by activity measurement, X-ray diffraction, Brunauer, Emmett, and Teller surface area tests, Scanning electron microscopy, H2-temperature programmed reduction and Fourier-transform infrared spectroscopy. The experimental results show that Ce and Cu are added to a Mn/γ-Al2O3 catalyst as bimetallic additives, which weakens the interaction between Mn and the carrier, improves the dispersion of MnOx on the surface of the carrier, improves the specific surface area of the catalyst, and improves the reducibility. Mn-Ce-Cu/γ-Al2O3 catalyst reaches a maximum conversion of 92% at 202 °C. Also, the addition of the auxiliary metals promotes the reaction mechanism to a certain extent, and the addition of Ce especially promotes the conversion of NO-NO2, which is conducive to the production of intermediate products that promote the NH3-SCR reaction.
Collapse
Affiliation(s)
- Wen Nie
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xiao Yan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Fengning Yu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qiu Bao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China.
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Na Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Weiwei Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wenjin Niu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qifan Tian
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong Province, China
- State Key Laboratory of Mining Disaster Prevention and Control Co-Found By Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
4
|
Leung KM, Tsui CKJ, Ho CK, Liao CZ, Yau HT, Chan KY, Li CYV. UiO66-Derived Catalyst for Low Temperature Catalytic Reduction of NO with NH 3. ACS OMEGA 2023; 8:12362-12371. [PMID: 37033813 PMCID: PMC10077550 DOI: 10.1021/acsomega.2c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 06/19/2023]
Abstract
Diesel exhaust emissions are major outdoor air pollutants. Reducing the emission of NOx by diesel commercial vehicles and related machineries is at present a great challenge. In this study, we synthesize a catalyst for low-temperature catalytic reduction of NO using calcinated UiO-66(Zr) as a host for the doping of cerium, manganese, and titanium by the incipient wetness impregnation, followed by the dispersion of 1.0 wt % platinum. A solid solution of Ce0.15Zr0.54Mn0.11Ti0.20O2/1.0Pt (CZMTO/Pt) is synthesized as evident by the structural characterizations. The catalyst demonstrates significant NO reduction in the laboratory due to the synergistic effect of various elements, with NO conversion above 80% at 160 °C.
Collapse
Affiliation(s)
- Ka-Ming Leung
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| | - Chi-Kin J. Tsui
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| | - Ching-Kit Ho
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| | - Chang-Zhong Liao
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
- State
Key Laboratory of Featured Metal Materials and Life-cycle Safety for
composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hei-Tung Yau
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| | - Kwong-Yu Chan
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| | - Chi-Ying V. Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam, Hong
Kong
| |
Collapse
|
5
|
Selective Catalytic Reduction of NOx by CO over Cu(Fe)/SBA-15 Catalysts: Effects of the Metal Loading on the Catalytic Activity. Catalysts 2023. [DOI: 10.3390/catal13030527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Mesoporous Cu(Fe)/SBA-15 catalysts were prepared with distinct metal loadings of ca. 2–10 wt.%. A detailed set of characterizations using X-ray diffraction (XRD), electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), scanning electron microscopy coupled to energy dispersive spectroscopy (SEM-EDS), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy was performed to correlate the relationship among structure, electronic properties and catalytic performances. All solids were evaluated in the selective catalytic reduction of NOx in the presence of CO (CO-SCR). The influence of the metal loadings on the overall activity indicated that introducing high amounts of Fe or Cu on the catalysts was beneficial to form either CuO or α-Fe2O3 clusters. Cux/SBA-15 series exhibited more efficient activity and poison-tolerant ability during CO-SCR reaction, in contrast to Fex/SBA-15. In spite of the Fe species introduced on SBA-15 having structural features similar to those of Cu ones, low interactions among Fe nanoparticles, silica and clusters impeded the high performances of Fe10/SBA-15. XPS revealed the Fe species in a more oxidized state, indicating the stability of the solid after the catalytic tests, in agreement with EPR and Raman spectroscopy. Cu8/SBA-15 worked better, being recyclable due to the interaction of the Cu2+ ions with SBA-15, avoiding the deactivation of the catalyst.
Collapse
|
6
|
Zhao S, Song K, Zhu J, Ma D, Shi JW. Gd-Mn-Ti composite oxides anchored on waste coal fly ash for the low-temperature catalytic reduction of nitrogen oxide. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Ye B, Jeong B, Lee MJ, Kim TH, Park SS, Jung J, Lee S, Kim HD. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. NANO CONVERGENCE 2022; 9:51. [PMID: 36401645 PMCID: PMC9675887 DOI: 10.1186/s40580-022-00341-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Vanadium-based catalysts have been used for several decades in ammonia-based selective catalytic reduction (NH3-SCR) processes for reducing NOx emissions from various stationary sources (power plants, chemical plants, incinerators, steel mills, etc.) and mobile sources (large ships, automobiles, etc.). Vanadium-based catalysts containing various vanadium species have a high NOx reduction efficiency at temperatures of 350-400 °C, even if the vanadium species are added in small amounts. However, the strengthening of NOx emission regulations has necessitated the development of catalysts with higher NOx reduction efficiencies. Furthermore, there are several different requirements for the catalysts depending on the target industry and application. In general, the composition of SCR catalyst is determined by the components of the fuel and flue gas for a particular application. It is necessary to optimize the catalyst with regard to the reaction temperature, thermal and chemical durability, shape, and other relevant factors. This review comprehensively analyzes the properties that are required for SCR catalysts in different industries and the development strategies of high-performance and low-temperature vanadium-based catalysts. To analyze the recent research trends, the catalysts employed in power plants, incinerators, as well as cement and steel industries, that emit the highest amount of nitrogen oxides, are presented in detail along with their limitations. The recent developments in catalyst composition, structure, dispersion, and side reaction suppression technology to develop a high-efficiency catalyst are also summarized. As the composition of the vanadium-based catalyst depends mostly on the usage in stationary sources, various promoters and supports that improve the catalyst activity and suppress side reactions, along with the studies on the oxidation state of vanadium, are presented. Furthermore, the research trends related to the nano-dispersion of catalytically active materials using various supports, and controlling the side reactions using the structure of shaped catalysts are summarized. The review concludes with a discussion of the development direction and future prospects for high-efficiency SCR catalysts in different industrial fields.
Collapse
Affiliation(s)
- Bora Ye
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Bora Jeong
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Myeung-Jin Lee
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
| | - Tae Hyeong Kim
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Sam-Sik Park
- R&D Center, NANO. Co., Ltd, Sangju, 37257, Republic of Korea
| | - Jaeil Jung
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Seunghyun Lee
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea.
| | - Hong-Dae Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, Ulsan, 44413, Republic of Korea.
| |
Collapse
|
8
|
Gui R, Yan Q, Xue T, Gao Y, Li Y, Zhu T, Wang Q. The promoting/inhibiting effect of water vapor on the selective catalytic reduction of NO x. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129665. [PMID: 35907283 DOI: 10.1016/j.jhazmat.2022.129665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/02/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
In the field of nitrogen oxides (NOx) abatement, developing selective catalytic reduction (SCR) catalysts that can operate stably in the practical conditions remains a big challenge because of the complexity and uncertainty of actual flue gas emissions. As water vapor is unavoidable in the actual flue gas, it is indispensable to explore its effect on the performance of SCR catalysts. Many studies have proved that the effects of H2O on de-NOx activity of SCR catalysts were indeed observed during SCR reactions operated under wet conditions. Whether the effect is promotive or inhibitory depends on the reaction conditions, catalyst types and reducing agents used in SCR reaction. This review focuses on the effect of H2O on SCR catalysts and SCR reaction, including promoting effect, inhibiting effect, as well as the effecting mechanism. Besides, various strategies for developing a water-resistant SCR catalyst are also included. We hope that this work can give a more comprehensive insight into the effects of H2O on SCR catalysts and help with the rational design of water-resistant SCR catalysts for further practical application in NOx abatement field.
Collapse
Affiliation(s)
- Rongrong Gui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianshan Xue
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanshan Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
9
|
Structure-activity strategy comparison of (NH4)2CO3 and NH4OH precipitants on MnO catalyst for low-temperature NO abatement. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Baltrėnas P, Urbanas D, Sukackienė Z, Stalnionienė I, Tamašauskaitė-Tamašiūnaitė L, Balčiūnaitė A, Jasulaitienė V. Selective catalytic reduction of NO by NH 3 using Mn-based catalysts supported by Ukrainian clinoptiolite and lightweight expanded clay aggregate. ENVIRONMENTAL TECHNOLOGY 2022; 43:3269-3282. [PMID: 33881966 DOI: 10.1080/09593330.2021.1921046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
In this study, Mn-based multicomponent catalysts supported by two different carriers (lightweight expanded clay aggregate and the Ukrainian clinoptiolite) were prepared by electroless metal deposition method and tested for the selective catalytic reduction of NO with ammonia (NH3-SCR de-NO). Prior to the activity test, all the catalysts prepared were characterized by inductively coupled plasma optical emission spectroscopy, field emission scanning electron microscopy (FESEM), energy dispersive X-ray mapping, X-ray photoelectron spectroscopy, H2-TPR and NH3-TPD techniques. The particular interest of the present study was focused on the investigation of the carrier's role in the NO catalytic reduction and the promoting effect provided by the incorporation of the small amount of Pt (0.1 wt.%) in the Mn-based catalytic layer. The results revealed that the carrier's role in the NO catalytic conversion can be considered as a factor determining the effectiveness of the conversion process. Ukrainian clinoptiolite was proved to be a more attractive carrier for the preparation of the effective SCR de-NO catalysts due to its intrinsic sorption capacity, surface acidity and the redox potential. The high NO conversion efficiency provided by the Mn-based clinoptiolite-supported catalysts can be explained by the synergistic effect between the carrier and the active species deposited. It was shown that both the Mn97.6Cu2.4/clinoptiolite and the Mn97.5Co2.5/clinoptiolite catalysts can be successfully applied as the low-temperature (100-300°C) catalysts for NH3-SCR de-NO. When the NO removal efficiency varies in the range of 86-91%, the additional incorporation of Pt in the active layer in the amount of 0.1 wt.% can enhance the NO reduction by about 5% on average.
Collapse
Affiliation(s)
- Pranas Baltrėnas
- Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Davyd Urbanas
- Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Zita Sukackienė
- Center for Physical Sciences and Technology Vilnius, Lithuania
| | | | | | | | - Vitalija Jasulaitienė
- Faculty of Environmental Engineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
11
|
Shi W, Liu J, Zhu Y, Zhao L, Wang Y, Cheng Z, Peng X, Shi X, Yu Y, He H. Extruded monolith MnO -CeO2-TiO2 catalyst for NH3-SCR of low temperature flue gas from an industry boiler: Deactivation and recovery. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Recent progress of Pd/zeolite as passive NOx adsorber: Adsorption chemistry, structure-performance relationships, challenges and prospects. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Synthesis of novel metal/bimetal nanoparticle-modified ZSM-5 zeolite nanocomposite catalysts and application on toluene methylation. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04597-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Effect of flue gas components on the NO removal and element mercury oxidation performance of Mn-modified low-temperature catalyst. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The development of a low-temperature water and sulfur-resistant catalyst with high efficiency of NO removal and element mercury Hg(0) oxidation performance is one of the main directions for the synergistic removal of multiple pollutants from flue gas. The transition metal Mn is used to modify the V-W/Ti catalyst to prepare a modified Mn-SCR catalyst. The effects of Mn loading and complex flue gas components (SO2, H2O and HCl) on the modified catalysts activity were investigated on a small fixed-bed experimental bench, respectively. As the Mn loading increases, the acid sites on the catalyst surface are significantly enhanced, the window of NO removal temperature is significantly widened, and the Hg(0) oxidation performance is nearly 100%. The optimal loading amount of Mn is 0.2(Mn/Ti, mol). When the Mn loading exceeds 0.2, the particles on the catalyst surface sinter, and the specific surface area decreases. However, little difference is observed in catalyst activity. When SO2 and H2O are present in the flue gas, dual-action catalyst activity can be significantly suppressed, but the effect of H2O on catalyst activity is greater than that of SO2. With the increase of the HCl concentration from 0 ppm to 50 ppm, the oxidation efficiency of Hg(0) and the removal efficiency of NO increased slightly.
Collapse
|
15
|
Lei Z, Wei K, Yang J, Zhang L, Lu X, Fang B. Ultrasonication-Assisted Preparation of a Mn-Based Blast Furnace Slag Catalyst: Effects on the Low-Temperature Selective Catalytic Reduction Denitration Process. ACS OMEGA 2021; 6:23059-23066. [PMID: 34549106 PMCID: PMC8444199 DOI: 10.1021/acsomega.1c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Reducing costs and improving performance have always been hotspots in the field of catalyst research. In order to control the NO x in the low-temperature flue gas of nonpower industries, this paper studies the denitration performance of the ultrasonication-assisted preparation of Mn-based blast furnace slag selective catalytic reduction (SCR) low-temperature denitration catalysts. The catalyst was characterized by FT-IR, XRD, and SEM. The study found that ultrasound assistance can make the active components on the catalyst surface more uniformly dispersed and improve the catalytic activity of the catalyst. Under conditions of 80 W ultrasonic power and 20 min ultrasonic time, the denitration performance of the Mn-based blast furnace slag catalyst is optimal, and the NO removal rate is 2.5 times that of the unsonicated catalyst. This work clarified the mechanism of the effect of ultrasonic assistance on the Mn-based blast furnace slag catalyst and at the same time realized the utilization of solid waste resources and air pollution control.
Collapse
Affiliation(s)
- Zhang Lei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
- Key
Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
| | - Kuang Wei
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Jia Yang
- School
of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Lei Zhang
- China
National Heavy Machinery Research Institute Co, Lto, Xi’an 710032, China
| | - Xi Lu
- School
of Geology and Environment, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Bai Fang
- CAS
Key Laboratory of Green Process and Engineering, Institute of Process
Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
16
|
Selective Catalytic Reduction of NO by NH3 over Mn–Cu Oxide Catalysts Supported by Highly Porous Silica Gel Powder: Comparative Investigation of Six Different Preparation Methods. Catalysts 2021. [DOI: 10.3390/catal11060702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, Mn-based catalysts supported by highly porous silica gel powder (SSA up to 470 m2·g−1 and total pore volume up to 0.8 cm3·g−1) were prepared by six different methods in liquid solutions (electroless metal deposition, stepwise addition of a reducing agent, wet impregnation, incipient wetness impregnation, urea hydrolysis, and ammonia evaporation) and tested for selective catalytic reduction of NOx with ammonia (NH3-SCR de-NOx). Prior to the activity test all the catalysts prepared were characterized by ICP-OES, SEM, EDX mapping, XPS, XRD and N2 adsorption techniques to provide the comprehensive information about their composition and morphology, investigate the dispersion of active components on the carrier surface, identify the chemical forms and structural properties of the catalytically active species of the catalysts prepared. The results revealed that all the methods applied for preparation of SCR de-NOx catalysts can ensure the uniform distribution of Mn species on the carrier surface, however as it is typical for preparation techniques in a liquid phase the significant reduction in SSA and pore volume along with increasing the loading was observed. Considering both the physicochemical properties and the catalytic performance of the catalysts the least effective preparation method was shown to be ammonia evaporation, while the most attractive techniques are incipient wetness impregnation and electroless metal deposition.
Collapse
|
17
|
Preparation and Performance of Cerium-Based Catalysts for Selective Catalytic Reduction of Nitrogen Oxides: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11030361] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Selective catalytic reduction of nitrogen oxides with NH3 (NH3-SCR) is still the most commonly used control technology for nitrogen oxides emission. Specifically, the application of rare earth materials has become more and more extensive. CeO2 was widely developed in NH3-SCR reaction due to its good redox performance, proper surface acidity and abundant resource reserves. Therefore, a large number of papers in the literature have described the research of cerium-based catalysts. This review critically summarized the development of the different components of cerium-based catalysts, and characterized the preparation methods, the catalytic performance and reaction mechanisms of the cerium-based catalysts for NH3-SCR. The purpose of this review is to highlight: (1) the modification effect of the various metal elements for cerium-based catalysts; (2) various synthesis methods of the cerium-based catalysts; and (3) the physicochemical properties of the various catalysts and clarify their relations to catalytic performances, particularly in the presence of SO2 and H2O. Finally, we hope that this work can give timely technical guidance and valuable insights for the applications of NH3-SCR in the field of NOx control.
Collapse
|
18
|
Tang X, Wang C, Gao F, Han W, Yi H, Zhao S, Zhou Y, Liu Y. Mn-Fe-Ce multiple oxides with Al2O3 coating supported onto honeycomb cordierite monoliths for NO catalytic oxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Top 10 Cited Papers in the Section “Environmental Catalysis”. Catalysts 2021. [DOI: 10.3390/catal11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This editorial examines the 10 most cited articles of 2018–2019 published in the “Environmental Catalysis” section of the Catalysts journal [...]
Collapse
|
20
|
Wang J, Yi X, Su Q, Chen J, Xie Z. Effect of FeOx and MnOx doping into the CeO2–V2O5/TiO2 nanocomposite on the performance and mechanism in selective catalytic reduction of NOx with NH3. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02471f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FeOx–CeO2–V2O5/TiO2 catalyst showed higher N2 selectivity and resistance to SO2 and H2O than MnOx–CeO2–V2O5/TiO2 catalyst due to their different physicochemical properties. The interaction of Fe, Ce and V oxides and reaction mechanism were explored.
Collapse
Affiliation(s)
- Jinxiu Wang
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
- P.R. China
| | - Xianfang Yi
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
- P.R. China
| | - Qingfa Su
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
- P.R. China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, and Key Lab of Urban Environment and Health
- Institute of Urban Environment
- Chinese Academy of Sciences
- Xiamen 361021
- P.R. China
| | - Zongli Xie
- CSIRO Manufacturing
- Clayton South MDC
- Australia
| |
Collapse
|
21
|
Chen Z, Wu X, Ni K, Shen H, Huang Z, Zhou Z, Jing G. Molybdenum-decorated V 2O 5–WO 3/TiO 2: surface engineering toward boosting the acid cycle and redox cycle of NH 3-SCR. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02147d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Submonolayer Mo-decorated V2O5–WO3/TiO2 provides abundant vanadia species and unsaturated V4+ species, accelerating the acid and redox cycling of low-temperature NH3-SCR.
Collapse
Affiliation(s)
- Ziyi Chen
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Xiaomin Wu
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Kaiwen Ni
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Huazhen Shen
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Zhiwei Huang
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Zuoming Zhou
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Guohua Jing
- Department of Environmental Science & Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| |
Collapse
|
22
|
Zhao S, Shi JW, Niu C, Wang B, He C, Liu W, Xiao L, Ma D, Wang H, Cheng Y. FeVO 4-supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO x by NH 3. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01424b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Iron vanadate (FeVO4) nanorods are used as a carrier to support manganese (Mn) and cerium (Ce) oxides for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with NH3 for the first time.
Collapse
Affiliation(s)
- Shuqi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cihang Niu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baorui Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Liu
- Qiyuan (Xi'an) Dae Young Environmental Protection Technology Co., Ltd., Xi'an 710018, China
| | - Lei Xiao
- Qiyuan (Xi'an) Dae Young Environmental Protection Technology Co., Ltd., Xi'an 710018, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: A review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Pan B, Chen J, Zhang F, Zhang B, Li D, Zhong Z, Xing W. Porous TiO2 aerogel-modified SiC ceramic membrane supported MnOx catalyst for simultaneous removal of NO and dust. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Zhang N, He H, Wang D, Li Y. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121464] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wang J, Yi X, Ng D, Li H, Miao J, Su Q, Chen J, Xie Z. Synthesis and Characterization of Mn–Ce–VOx/TiO2 Nanocomposite for SCR of NOx at Low Temperatures: Role of Mn, Ce and V Oxide. Top Catal 2020. [DOI: 10.1007/s11244-020-01315-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kuma R, Kitano T, Tsujiguchi T, Tanaka T. In Situ XANES Characterization of V 2O 5/TiO 2–SiO 2–MoO 3 Catalyst for Selective Catalytic Reduction of NO by NH 3. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryoji Kuma
- New Energy Materials Research Department, Nippon Shokubai Company Ltd., Himeji, Hyogo 671-1292, Japan
| | - Tomoyuki Kitano
- Analysis Technology Center, Nippon Shokubai Company Ltd., Suita, Osaka 564-0034, Japan
| | - Takuya Tsujiguchi
- New Energy Materials Research Department, Nippon Shokubai Company Ltd., Himeji, Hyogo 671-1292, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
28
|
Niu C, Wang Y, Ren D, Xiao L, Duan R, Wang B, Wang X, Xu Y, Li Z, Shi JW. The deposition of VWOx on the CuCeOy microflower for the selective catalytic reduction of NOx with NH3 at low temperatures. J Colloid Interface Sci 2020; 561:808-817. [DOI: 10.1016/j.jcis.2019.11.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
|
29
|
DeNOx of Nano-Catalyst of Selective Catalytic Reduction Using Active Carbon Loading MnOx-Cu at Low Temperature. Catalysts 2020. [DOI: 10.3390/catal10010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the improvement of environmental protection standards, selective catalytic reduction (SCR) has become the mainstream technology of flue gas deNOx. Especially, the low-temperature SCR nano-catalyst has attracted more and more attention at home and abroad because of its potential performance and economy in industrial applications. In this paper, low-temperature SCR catalysts were prepared using the activated carbon loading MnOx-Cu. Then, the catalysts were packed into the fiedbed stainless steel micro-reactor to evaluate the selective catalytic reduction of NO performance. The influence of reaction conditions was investigated on the catalytic reaction, including the MnOx-Cu loading amount, calcination and reaction temperature, etc. The experimental results indicate that SCR catalysts show the highest catalytic activity for NO conversion when the calcination temperature is 350 °C, MnOx loading amount is 5%, Cu loading amount is 3%, and reaction temperature is 200 °C. Under such conditions, the NO conversion arrives at 96.82% and the selectivity to N2 is almost 99%. It is of great significance to investigate the influence of reaction conditions in order to provide references for industrial application.
Collapse
|
30
|
|
31
|
Li G, Mao D, Chao M, Li G, Yu J, Guo X. Significantly enhanced Pb resistance of a Co-modified Mn–Ce–O x/TiO 2 catalyst for low-temperature NH 3-SCR of NO x. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01066a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Co modification can significantly improve the performance for low-temperature NH3-SCR of NOx and the Pb resistance of the Mn–Ce–Ox/TiO2 catalyst.
Collapse
Affiliation(s)
- Gehua Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Dongsen Mao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Mengxi Chao
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Gang Li
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Jun Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| | - Xiaoming Guo
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- PR China
| |
Collapse
|
32
|
A Critical Review of Recent Progress and Perspective in Practical Denitration Application. Catalysts 2019. [DOI: 10.3390/catal9090771] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitrogen oxides (NOx) represent one of the main sources of haze and pollution of the atmosphere as well as the causes of photochemical smog and acid rain. Furthermore, it poses a serious threat to human health. With the increasing emission of NOx, it is urgent to control NOx. According to the different mechanisms of NOx removal methods, this paper elaborated on the adsorption method represented by activated carbon adsorption, analyzed the oxidation method represented by Fenton oxidation, discussed the reduction method represented by selective catalytic reduction, and summarized the plasma method represented by plasma-modified catalyst to remove NOx. At the same time, the current research status and existing problems of different NOx removal technologies were revealed and the future development prospects were forecasted.
Collapse
|
33
|
Franken T, Vieweger E, Klimera A, Hug M, Heel A. Sulphur tolerant diesel oxidation catalysts by noble metal alloying. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Han L, Cai S, Gao M, Hasegawa JY, Wang P, Zhang J, Shi L, Zhang D. Selective Catalytic Reduction of NOx with NH3 by Using Novel Catalysts: State of the Art and Future Prospects. Chem Rev 2019; 119:10916-10976. [DOI: 10.1021/acs.chemrev.9b00202] [Citation(s) in RCA: 568] [Impact Index Per Article: 113.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lupeng Han
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Sixiang Cai
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Jun-ya Hasegawa
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Penglu Wang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- Department of Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, Research Center of Nano Science and Technology, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
Wang H, Li Q, You C, Tan Z. An empirical model of absorption of nitric oxide with ammoniacal cobalt (II) solutions in a Spray Tower. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Gao Q, Ye Q, Han S, Cheng S, Kang T, Dai H. Effects of Cu/Al Mass Ratio and Hydrothermal Aging Temperature on Catalytic Performance of Cu/SAPO-18 for the NH3-SCR of NO in Simulated Diesel Exhaust. CATALYSIS SURVEYS FROM ASIA 2019. [DOI: 10.1007/s10563-019-09283-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Weiman L, Haidi L, Yunfa C. Mesoporous MnOx-CeO 2 composites for NH 3-SCR: the effect of preparation methods and a third dopant. RSC Adv 2019; 9:11912-11921. [PMID: 35517014 PMCID: PMC9063486 DOI: 10.1039/c9ra00731h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, different preparation methods including an oxalate route, a nano-casting strategy and a traditional co-precipitation route were applied to obtain MnOx-CeO2 mixed oxides for selective catalytic reduction (SCR) of NO with NH3. The catalyst prepared from the oxalate route showed improved performance for NOx conversion and SO2 + H2O durability. To further improve the SO2 and H2O resistance of catalysts, ternary oxides were prepared from the oxalate route. The catalysts were studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD), SO2 temperature-programmed desorption (SO2-TPD), and in situ diffuse reflectance infrared fourier transform spectroscopy (in situ DRIFTS). The nickel-manganese-cerium ternary oxide showed the best SO2 and H2O durability. The reason can be ascribed to its smaller pores, amorphous structure, and moderate amount of surface Mn3+/oxygen species, which could decrease chemical adsorption of SO2.
Collapse
Affiliation(s)
- Li Weiman
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
- Zhongke Langfang Institute of Process Engineering, Langfang Economic & Technical Development Zone Fenghua Road No. 1 Hebei Province China
- CAS Center for Excellence in Urban Atmospheric Environment Xiamen 361021 China
| | - Liu Haidi
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Chen Yunfa
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- CAS Center for Excellence in Urban Atmospheric Environment Xiamen 361021 China
| |
Collapse
|
38
|
Abstract
The importance of the low-temperature selective catalytic reduction (LT-SCR) of NOx by NH3 is increasing due to the recent severe pollution regulations being imposed around the world. Supported and mixed transition metal oxides have been widely investigated for LT-SCR technology. However, these catalytic materials have some drawbacks, especially in terms of catalyst poisoning by H2O or/and SO2. Hence, the development of catalysts for the LT-SCR process is still under active investigation throughout seeking better performance. Extensive research efforts have been made to develop new advanced materials for this technology. This article critically reviews the recent research progress on supported transition and mixed transition metal oxide catalysts for the LT-SCR reaction. The review covered the description of the influence of operating conditions and promoters on the LT-SCR performance. The reaction mechanism, reaction intermediates, and active sites are also discussed in detail using isotopic labelling and in situ FT-IR studies.
Collapse
|
39
|
Byproduct Analysis of SO2 Poisoning on NH3-SCR over MnFe/TiO2 Catalysts at Medium to Low Temperatures. Catalysts 2019. [DOI: 10.3390/catal9030265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The byproducts of ammonia-selective catalytic reduction (NH3-SCR) process over MnFe/TiO2 catalysts under the conditions of both with and without SO2 poisoning were analyzed. In addition to the NH3-SCR reaction, the NH3 oxidation and the NO oxidation reactions were also evaluated at temperatures of 100–300 °C to clarify the reactions occurred during the SCR process. The results indicated that major byproducts for the NH3 oxidation and NO oxidation tests were N2O and NO2, respectively, and their concentrations increased as the reaction temperature increased. For the NH3-SCR test without the presence of SO2, it revealed that N2O was majorly from the NH3-SCR reaction instead of from NH3 oxidation reaction. The byproducts of N2O and NO2 for the NH3-SCR reaction also increased after increasing the reaction temperature, which caused the decreasing of N2-selectivity and NO consumption. For the NH3-SCR test with SO2 at 150 °C, there were two decay stages during SO2 poisoning. The first decay was due to a certain amount of NH3 preferably reacted with SO2 instead of with NO or O2. Then the catalysts were accumulated with metal sulfates and ammonium salts, which caused the second decay of NO conversion. The effluent N2O increased as poisoning time increased, which was majorly from oxidation of unreacted NH3. On the other hand, for the NH3-SCR test with SO2 at 300 °C, the NO conversion was not decreased after increasing the poisoning time, but the N2O byproduct concentration was high. However, the SO2 led to the formation of metal sulfates, which might inhibit NO oxidation reactions and cause the concentration of N2O gradually decreased as well as the N2-selectivity increased.
Collapse
|
40
|
Zhang B, Liebau M, Suprun W, Liu B, Zhang S, Gläser R. Suppression of N2O formation by H2O and SO2 in the selective catalytic reduction of NO with NH3 over a Mn/Ti–Si catalyst. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01156k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Proposed mechanism of NO reduction and N2O formation as well as H2O/SO2 suppression effects with participation of (a) Lewis acid sites and (b) Brønsted acid sites over a Mn/Ti–Si catalyst.
Collapse
Affiliation(s)
- Bolin Zhang
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- 100083 Beijing
- China
- Institute of Chemical Technology
| | - Michael Liebau
- Institute of Chemical Technology
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Wladimir Suprun
- Institute of Chemical Technology
- Universität Leipzig
- 04103 Leipzig
- Germany
| | - Bo Liu
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- 100083 Beijing
- China
| | - Shengen Zhang
- Institute for Advanced Materials and Technology
- University of Science and Technology Beijing
- 100083 Beijing
- China
| | - Roger Gläser
- Institute of Chemical Technology
- Universität Leipzig
- 04103 Leipzig
- Germany
| |
Collapse
|
41
|
Shi JW, Wang Y, Duan R, Gao C, Wang B, He C, Niu C. The synergistic effects between Ce and Cu in CuyCe1−yW5Ox catalysts for enhanced NH3-SCR of NOx and SO2 tolerance. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01949e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-manganese-based metal oxides are promising catalysts for the NH3-SCR (selective catalytic reduction) of NOx at low temperatures.
Collapse
Affiliation(s)
- Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Yao Wang
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Ruibin Duan
- Guangdong Provincial Academy of Building Research Group Co., Ltd
- Guangzhou 510530
- China
| | - Chen Gao
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Baorui Wang
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| | - Chi He
- Department of Environmental Science and Engineering
- School of Energy and Power Engineering
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Chunming Niu
- State Key Laboratory of Electrical Insulation and Power Equipment
- Center of Nanomaterials for Renewable Energy
- School of Electrical Engineering
- Xi'an Jiaotong University
- Xi'an 710049
| |
Collapse
|
42
|
Abstract
Manganese oxide forms prepared by different methods differ by their compositions, phase ratios in polyphase samples, and crystallite sizes (XRD and TEM characterization). Among the phases, tunnel-structured β-MnO2 (pyrolusite), α-MnO2 (cryptomelane), ε-MnO2 (akhtenskite), and β-Mn2O3 (bixbyite) have been identified. Water vapor sorption isotherms showed substantial differences in the affinities of water molecules to oxide surfaces of the manganese oxide forms under study. The parameters of the BET equation and pore size distribution curves have been calculated. The manganese oxide forms have mesoporous structures characterized by uniform and non-uniform pore sizes as well as by moderate hydrophilic behavior.
Collapse
|
43
|
|
44
|
Abstract
Firing of biomass can lead to rapid deactivation of the vanadia-based NH3-SCR catalyst, which reduces NOx to harmless N2. The deactivation is mostly due to the high potassium content in biomasses, which results in submicron aerosols containing mostly KCl and K2SO4. The main mode of deactivation is neutralization of the catalyst’s acid sites. Four ways of dealing with high potassium contents were identified: (1) potassium removal by adsorption, (2) tail-end placement of the SCR unit, (3) coating SCR monoliths with a protective layer, and (4) intrinsically potassium tolerant catalysts. Addition of alumino silicates, often in the form of coal fly ash, is an industrially proven method of removing K aerosols from flue gases. Tail-end placement of the SCR unit was also reported to result in acceptable catalyst stability; however, flue-gas reheating after the flue gas desulfurization is, at present, unavoidable due to the lack of sulfur and water tolerant low temperature catalysts. Coating the shaped catalysts with thin layers of, e.g., MgO or sepiolite reduces the K uptake by hindering the diffusion of K+ into the catalyst pore system. Intrinsically potassium tolerant catalysts typically contain a high number of acid sites. This can be achieved by, e.g., using zeolites as support, replacing WO3 with heteropoly acids, and by preparing highly loaded, high surface area, very active V2O5/TiO2 catalyst using a special sol-gel method.
Collapse
|
45
|
Enhanced Low Temperature NO Reduction Performance via MnOx-Fe2O3/Vermiculite Monolithic Honeycomb Catalysts. Catalysts 2018. [DOI: 10.3390/catal8030100] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|