1
|
Gao Y, Jiang M, Yang L, Li Z, Tian FX, He Y. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Front Chem 2022; 10:959422. [PMID: 36003612 PMCID: PMC9393236 DOI: 10.3389/fchem.2022.959422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) is one of the cleanest fossil fuel resources and is playing an increasingly indispensable role in our way to carbon neutrality, by providing less carbon-intensive heat and electricity worldwide. On the other hand, the atmospheric concentration of CH4 has raced past 1,900 ppb in 2021, almost triple its pre-industrial levels. As a greenhouse gas at least 86 times as potent as carbon dioxide (CO2) over 20 years, CH4 is becoming a major threat to the global goal of deviating Earth temperature from the +2°C scenario. Consequently, all CH4-powered facilities must be strictly coupled with remediation plans for unburned CH4 in the exhaust to avoid further exacerbating the environmental stress, among which catalytic CH4 combustion (CMC) is one of the most effective strategies to solve this issue. Most current CMC catalysts are noble-metal-based owing to their outstanding C–H bond activation capability, while their high cost and poor thermal stability have driven the search for alternative options, among which transition metal oxide (TMO) catalysts have attracted extensive attention due to their Earth abundance, high thermal stability, variable oxidation states, rich acidic and basic sites, etc. To date, many TMO catalysts have shown comparable catalytic performance with that of noble metals, while their fundamental reaction mechanisms are explored to a much less extent and remain to be controversial, which hinders the further optimization of the TMO catalytic systems. Therefore, in this review, we provide a systematic compilation of the recent research advances in TMO-based CMC reactions, together with their detailed reaction mechanisms. We start with introducing the scientific fundamentals of the CMC reaction itself as well as the unique and desirable features of TMOs applied in CMC, followed by a detailed introduction of four different kinetic reaction models proposed for the reactions. Next, we categorize the TMOs of interests into single and hybrid systems, summarizing their specific morphology characterization, catalytic performance, kinetic properties, with special emphasis on the reaction mechanisms and interfacial properties. Finally, we conclude the review with a summary and outlook on the TMOs for practical CMC applications. In addition, we also further prospect the enormous potentials of TMOs in producing value-added chemicals beyond combustion, such as direct partial oxidation to methanol.
Collapse
Affiliation(s)
- Yuan Gao
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Mingxin Jiang
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Liuqingqing Yang
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Zhuo Li
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Fei-Xiang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yulian He
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yulian He,
| |
Collapse
|
2
|
Ballauri S, Sartoretti E, Novara C, Giorgis F, Piumetti M, Fino D, Russo N, Bensaid S. Wide range temperature stability of palladium on ceria-praseodymia catalysts for complete methane oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.11.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Combined near-ambient pressure photoelectron spectroscopy and temporal analysis of products study of CH4 oxidation on Pd/γ-Al2O3 catalysts. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Trivedi S, Prasad R, Mishra A, Kalam A, Yadav P. Current scenario of CNG vehicular pollution and their possible abatement technologies: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39977-40000. [PMID: 32803583 PMCID: PMC7429099 DOI: 10.1007/s11356-020-10361-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Compressed natural gas is an alternative green fuel for automobile industry. Recently, the Indian government is targeting to replace all the conventional fuel vehicles by compressed natural gas (CNG) automobiles due to its several merits. Still, the presence of a significant amount of CO, CH4, and NOx gases in the CNG vehicle exhaust are quiet a matter of concern. Thus, to control the emissions from CNG engines, the major advances are under development of and oxidation is one of them in catalytic converter. In literature, the catalysts such as noble and non-noble metals have been reported for separate oxidation of CO and CH4.. Experimentally, it was found that non-noble metal catalysts are preferred due to its low cost, good thermal stability, and molding tractability. In literature, several articles have been published for CO and CH4 oxidation but no review paper is still available. Thus, the present review provides a comprehensive overview of separate as well as simultaneous CO and CH4 oxidation reactions for CNG vehicular emission control.
Collapse
Affiliation(s)
- Suverna Trivedi
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India.
- Department of Chemical Engineering, National Institute of Technology, Rourkela, Odisha, India.
| | - Ram Prasad
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Ashuthosh Mishra
- Department of Chemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
- Department of Environment Engineering, CSIR, National Environment and Engineering Research Institute, Noida, India
| | - Abul Kalam
- Department of Chemistry, College of Science, King Khalid University, Guraiger, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Guraiger, Saudi Arabia
| | - Pankaj Yadav
- Department of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, 382 007, India
| |
Collapse
|
5
|
The preparation and photocatalytic activity of Ag-Pd/g-C3N4 for the coupling reaction between benzyl alcohol and aniline. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Comparative Study of the Characteristics and Activities of Pd/γ-Al2O3 Catalysts Prepared by Vortex and Incipient Wetness Methods. Catalysts 2019. [DOI: 10.3390/catal9040336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5 wt% Pd/γ-Al2O3 catalysts were prepared by a modified Vortex Method (5-Pd-VM) and Incipient Wetness Method (5-Pd-IWM), and characterized by various techniques (Inductively coupled plasma atomic emission spectroscopy (ICP-AES), N2-physisorption, pulse CO chemisorption, temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD)) under identical conditions. Both catalysts had similar particle sizes and dispersions; the 5-Pd-VM catalyst had 0.5 wt% more Pd loading (4.6 wt%). The surfaces of both catalysts contained PdO and PdOx with about 7% more PdOx in 5-Pd-VM. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscope (SEM) images indicated presence of PdO/PdOx nanocrystals (8–10 nm) on the surface of the support. Size distribution by STEM showed presence of smaller nanoparticles (2–5 nm) in 5-Pd-VM. This catalyst was more active in the lower temperature range of 275–325 °C and converted 90% methane at 325 °C. The 5-Pd-VM catalyst was also very stable after 72-hour stability test at 350 °C showing 100% methane conversion, and was relatively resistant to steam deactivation. Hydrogen TPR of 5-Pd-VM gave a reduction peak at 325 °C indicating weaker interactions of the oxidized Pd species with the support. It is hypothesized that smaller particle sizes, uniform particle distribution, and weaker PdO/PdOx interactions with the support may contribute to the higher activity in 5-Pd-VM.
Collapse
|
7
|
Rice Husk Derived Porous Silica as Support for Pd and CeO2 for Low Temperature Catalytic Methane Combustion. Catalysts 2019. [DOI: 10.3390/catal9010026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The separation of Pd and CeO2 on the inner surface of controlled porous glass (CPG, obtained from phase-separated borosilicate glass after extraction) yields long-term stable and highly active methane combustion catalysts. However, the limited availability of the CPG makes such catalysts highly expensive and limits their applicability. In this work, porous silica obtained from acid leached rice husks after calcination (RHS) was used as a sustainable, cheap and broadly available substitute for the above mentioned CPG. RHS-supported Pd-CeO2 with separated CeO2 clusters and Pd nanoparticles was fabricated via subsequent impregnation/calcination of molten cerium nitrate and different amounts of palladium nitrate solution. The Pd/CeO2/RHS catalysts were employed for the catalytic methane combustion in the temperature range of 150–500 °C under methane lean conditions (1000 ppm) in a simulated off-gas consisting of 9.0 vol% O2, and 5.5 vol% CO2 balanced with N2. Additionally, tests with 10.5 vol% H2O as co-feed were carried out. The results revealed that the RHS-supported catalysts reached the performance of the cost intensive benchmark catalyst based on CPG. The incorporation of Pd-CeO2 into RHS additionally improved water-resistance compared to solely Pd/CeO2 lowering the required temperature for methane combustion in presence of 10.5 vol% H2O to values significantly below 500 °C (T90 = 425 °C).
Collapse
|
8
|
Commemorative Issue in Honor of Professor Calvin H. Bartholomew’s 75th Birthday. Catalysts 2018. [DOI: 10.3390/catal8110533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This editorial is written to recognize Professor Emeritus Calvin H. Bartholomew, who celebrated his 75th birthday in 2018, and to introduce the commemorative issue of Catalysts compiled in his honor. Following a brief biography that celebrates the career and contributions of Professor Bartholomew, the nine articles that make up the special issue are briefly reviewed. Dr. Bartholomew is an eminent researcher, an outstanding educator, mentor, and friend.
Collapse
|