1
|
Liu H, Wang S, Fu Y, Shi C, Song Y, Zhang L, Chen C, Ling Z. Dependence of the formation kinetics of carbon dioxide hydrate on clay aging for solid carbon dioxide storage. J Colloid Interface Sci 2024; 675:347-356. [PMID: 38972122 DOI: 10.1016/j.jcis.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Clay-based marine sediments have great potential for safe and effective carbon dioxide (CO2) encapsulation by storing enormous amounts of CO2 in solid gas hydrate form. However, the aging of clay with time changes the surface properties of clay and complicates the CO2 hydrate formation behaviors in sediments. Due to the long clay aging period, it is difficult to identify the role of clay aging in the formation of CO2 hydrate in marine sediments. Here, we used ultrasonication and plasma treatment to simulate the breakage and oxidation of clay nanoflakes in aging and investigated the influence of clay aging on CO2 hydrate formation kinetics. We found that the breakage and oxidation of clay nanoflakes would disrupt the siloxane rings and graft hydroxyl on the clay nanoflakes. This decreased the negative charge density of clay nanoflakes and weakened the interfacial interaction of clay nanoflakes with the surrounding water. Therefore, the small clay nanoflakes enriched in hydroxyl would disrupt the surrounding tetrahedral water structure analogous to the CO2 hydrate, resulting in the prolongation of CO2 hydrate nucleation. These results revealed the influence of the structure-function relationship of clay nanoflakes with CO2 hydrate formation and are favorable for the development of hydrate-based CO2 storage.
Collapse
Affiliation(s)
- Huiquan Liu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuai Wang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Fu
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changrui Shi
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yongchen Song
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| | - Lunxiang Zhang
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Cong Chen
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Zheng Ling
- Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China; Ningbo Institute of Dalian University of Technology, Ningbo 315016, China.
| |
Collapse
|
2
|
Jiao B, Xu P, Liu Y, Liu Y, Wei G, Zhu Y, Liu G, Lin X, Chen J, Weng X, Ding Y, Di J, Li Q. Direct Regeneration of NCM Cathode Material with Aluminum Scraps. Chem Asian J 2023; 18:e202300557. [PMID: 37553862 DOI: 10.1002/asia.202300557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
Hydrothermal-based direct regeneration of spent Li-ion battery (LIB) cathodes has garnered tremendous attention for its simplicity and scalability. However, it is heavily reliant on manual disassembly to ensure the high purity of degraded cathode powders, and the quality of regenerated materials. In reality, degraded cathodes often contain residual components of the battery, such as binders, current collectors, and graphite particles. Thorough investigation is thus required to understand the effects of these impurities on hydrothermal-based direct regeneration. In this study, we focus on isolating the effects of aluminum (Al) scraps on the direct regeneration process. We found that Al metal can be dissolved during the hydrothermal relithiation process. Even when the cathode material contains up to 15 wt.% Al scraps, no detrimental effects were observed on the recovered structure, chemical composition, and electrochemical performance of the regenerated cathode material. The regenerated NCM cathode can achieve a capacity of 163.68 mAh/g at 0.1 C and exhibited a high-capacity retention of 85.58 % after cycling for 200 cycles at 0.5 C. Therefore, the hydrothermal-based regeneration method is effective in revitalizing degraded cathode materials, even in the presence of notable Al impurity content, showing great potential for industrial applications.
Collapse
Affiliation(s)
- Binglei Jiao
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Panpan Xu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yinhai Liu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Department of Materials Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Yuxuan Liu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Department of Materials Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Gaolei Wei
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Department of Materials Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Yuncheng Zhu
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, Department of Materials Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Gangfeng Liu
- Suzhou Botree Cycling Sci & Tech Co., Ltd., Suzhou, 215128, P. R. China
| | - Xiao Lin
- Suzhou Botree Cycling Sci & Tech Co., Ltd., Suzhou, 215128, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Xuefei Weng
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yimin Ding
- Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiangtao Di
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qingwen Li
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
3
|
Enhanced SO2 Resistance of Cs-Modified Fe-HZSM-5 for NO Decomposition. Catalysts 2022. [DOI: 10.3390/catal12121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Direct decomposition of NO into N2 and O2 is an ideal technology for NOx removal. Catalyst deactivation by sulfur poisoning is the major obstacle for practical application. This paper focuses on strengthening the SO2 resistance of metal-exchanged HZSM-5 catalysts, by investigating the metals, promoters, preparation methods, metal-to-promoter molar ratios, Si/Al ratios and metal loadings. The results show that in the presence of SO2 (500 ppm), Fe is the best compared with Co, Ni and Cu. Cs, Ba and K modification enhanced the low-temperature activity of the Fe-HZSM-5 catalyst for NO decomposition, which can be further improved by increasing the exchanged-solution concentration and Fe/Cs molar ratio or decreasing the Si/Al molar ratio. Interestingly, Cs-doped Fe-HZSM-5 exhibited a high NO conversion and low NO2 selectivity but a high SO2 conversion within 10 h of continuous operation. This indicates that Cs-Fe-HZSM-5 has a relatively high SO2 resistance. Combining the characterization results, including N2 physisorption, XRD, ICP, XRF, UV–Vis, XPS, NO/SO2-TPD, H2-TPR and HAADF-STEM, SO42− was found to be the major sulfur species deposited on the catalyst’s surface. Cs doping inhibited the SO2 adsorption on Fe-HZSM-5, enhanced the Fe dispersion and increased the isolated Fe and Fe-O-Fe species. These findings could be the primary reasons for the high activity and SO2 resistance of Cs-Fe-HZSM-5.
Collapse
|
4
|
Catalytic Performance and Sulfur Dioxide Resistance of One-Pot Synthesized Fe-MCM-22 in Selective Catalytic Reduction of Nitrogen Oxides with Ammonia (NH3-SCR)—The Effect of Iron Content. Int J Mol Sci 2022; 23:ijms231810754. [PMID: 36142666 PMCID: PMC9501588 DOI: 10.3390/ijms231810754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
The catalytic performance of Fe-catalysts in selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) strongly depends on the nature of iron sites. Therefore, we aimed to prepare and investigate the catalytic potential of Fe-MCM-22 with various Si/Fe molar ratios in NH3-SCR. The samples were prepared by the one-pot synthesis method to provide high dispersion of iron and reduce the number of synthesis steps. We have found that the sample with the lowest concentration of Fe exhibited the highest catalytic activity of ca. 100% at 175 °C, due to the abundance of well-dispersed isolated iron species. The decrease of Si/Fe limited the formation of microporous structure and resulted in partial amorphization, formation of iron oxide clusters, and emission of N2O during the catalytic reaction. However, an optimal concentration of FexOy oligomers contributed to the decomposition of nitrous oxide within 250–400 °C. Moreover, the acidic character of the catalysts was not a key factor determining the high conversion of NO. Additionally, we conducted NH3-SCR catalytic tests over the samples after poisoning with sulfur dioxide (SO2). We observed that SO2 affected the catalytic performance mainly in the low-temperature region, due to the deposition of thermally unstable ammonium sulfates.
Collapse
|
5
|
Cai Z, Zhang G, Tang Z, Zhang J. Engineering yolk-shell MnFe@CeO x@TiO x nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH 3 at low temperatures. NANOSCALE 2022; 14:12281-12296. [PMID: 35895016 DOI: 10.1039/d2nr02255a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To broaden the reaction temperature range and improve the H2O-resistance of manganese-based catalysts, yolk-shell structured MnFe@CeOx@TiOx nanocages were prepared. The CeO2 shell could effectively increase the oxygen vacancy defect sites, and the TiO2 shell could remarkably improve the surface acid sites. Combining the advantages of the two shells could effectively solve the above questions. The catalytic efficiency of the yolk-shell MnFe@CeOx@TiOx-40 nanocages could reach above 90% in the range of 120-240 °C, and the water resistance could reach 90% at 240 °C. On the one hand, the construction of double shells could significantly increase the proportion of active species (Mn4+, Fe3+, Ce3+ and Oads) and the interface effect between the shell layers could effectively enhance the interaction between metal oxides. On the other hand, the construction of double shells could achieve an appropriate balance between the redox capacity of the catalyst and surface acidity. Simultaneously, in situ DRIFT spectroscopy indicated that the yolk-shell MnFe@CeOx@TiOx-40 nanocages mainly followed the L-H mechanism during the NH3-SCR reaction. Finally, this double-shell structure strategy provided a new idea for constructing a Mn-based catalyst with a wide temperature window and better low-temperature water resistance.
Collapse
Affiliation(s)
- Ziguo Cai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Guodong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Jiyi Zhang
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
6
|
Li H, Zhang S, Zhang A, Zhang X, Sun Z, Yang C, Zhu Q. Effect of Bimetal Element Doping on the Low-Temperature Activity of Manganese-Based Catalysts for NH3-SCR. Front Chem 2022; 10:957051. [PMID: 35936091 PMCID: PMC9354830 DOI: 10.3389/fchem.2022.957051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
A series of novel Mn6Zr1-xCox denitrification catalysts were prepared by the co-precipitation method. The effect of co-modification of MnOx catalyst by zirconium and cobalt on the performance of NH3-SCR was studied by doping transition metal cobalt into the Mn6Zr1 catalyst. The ternary oxide catalyst Mn6Zr0.3Co0.7 can reach about 90% of NOx conversion in a reaction temperature range of 100–275°C, and the best NOx conversion can reach up to 99%. In addition, the sulfur resistance and water resistance of the Mn6Zr0.3Co0.7 catalyst were also tested. When the concentration of SO2 is 200ppm, the NOx conversion of catalyst Mn6Zr0.3Co0.7 is still above 90%. 5 Vol% H2O has little effect on catalyst NOx conversion. The results showed that the Mn6Zr0.3Co0.7 catalyst has excellent resistance to sulfur and water. Meanwhile, the catalyst was systematically characterized. The results showed that the addition of zirconium and cobalt changes the surface morphology of the catalyst. The specific surface area, pore size, and volume of the catalyst were increased, and the reduction temperature of the catalyst was decreased. In conclusion, the doping of zirconium and cobalt successfully improves the NH3-SCR activity of the catalyst.
Collapse
Affiliation(s)
- Haixia Li
- *Correspondence: Haixia Li, ; Anchao Zhang,
| | | | | | | | | | | | | |
Collapse
|
7
|
α-Fe2O3 Nanoparticles/Iron-Containing Vermiculite Composites: Structural, Textural, Optical and Photocatalytic Properties. MINERALS 2022. [DOI: 10.3390/min12050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vermiculite two-dimensional mixed-layer interstratified structures are a very attractive material for catalysis and photocatalysis. The iron-containing vermiculite from the Palabora region (South Africa) and its samples, which calcined at 500 and 700 °C, were studied in comparison with the α-Fe2O3 nanoparticles/vermiculite composites for the first time as photocatalysts of methanol decomposition, which is an organic pollutant and an efficient source for hydrogen production. The aim of the work was to characterize their structural properties using X-ray fluorescence, X-ray diffraction, infrared spectroscopy, nitrogen physisorption, diffuse reflectance UV-Vis spectroscopy and photoluminescence spectroscopy to explain the photocatalytic effects. The photocatalytic test of the samples was performed in a batch photoreactor under UV radiation of an 8W Hg lamp. The photocatalytic activity of vermiculite–hydrobiotite–mica-like layers at different water hydration states in the interstratified structure and the substitution ratio of Fe(III)/Al in tetrahedra can initiate electrons and h+ holes on the surface that attack the methanol in redox processes. The activity of α-Fe2O3 nanoparticle photocatalysts stems from a larger crystallite size and surface area. The hydrogen production from the methanol–water mixture in the presence of vermiculites and α-Fe2O3 nanoparticles/vermiculite composites was very similar and higher than the yield produced by the commercial TiO2 photocatalyst Evonik P25 (H2 = 1052 µmol/gcat.). The highest yield of hydrogen was obtained in the presence of the Fe/V–700 composite (1303 µmol/gcat after 4 h of irradiation).
Collapse
|
8
|
Li W, Liu Z, Yu F, Pan K, Zhao H, Gao F, Zhou M, Dai B, Dan J. CuCeO x/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO. NEW J CHEM 2022. [DOI: 10.1039/d2nj00047d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction path of a CuCe/VMT(M) catalyst in the CO-SCR reaction at N2O low temperature was found.
Collapse
Affiliation(s)
- Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhisong Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
- Carbon Neutralization and Environmental Catalytic Technology Laboratory, Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Fei Gao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Mei Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
The promoting mechanism of doping Mn, Co, and Ce on gas adsorption property and anti-SO2 oxidation over γ-Fe2O3 (001) surface: A density functional theory study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5-MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Zabihi V, Eikani MH, Ardjmand M, Latifi SM, Salehirad A. Selective catalytic reduction of NO by Fe-Mn nanocatalysts: effect of structure type. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39159-39167. [PMID: 33751352 DOI: 10.1007/s11356-021-13119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
One of the most prominent features of selective catalytic reduction (SCR) of NOx is using a well-structured catalyst to advance the reaction in a desirable condition. At the present work, various crystal structures of Fe-Mn nanocatalysts, FeMn2O4 spinel, FeMnO3 perovskite and Fe2O3 (hematite)/Mn2O3 (bixbyite) nanocatalysts fabricated by co-precipitation method were evaluated for selective catalytic reduction of NO by NH3 (NH3-SCR). The studies specified that the crystal structure type had a high impact on structural properties and thereby the catalytic performance of the samples. The physicochemical characteristics of the nanocatalysts including molar ratio of metals, phase composition, crystallite size, particle size distribution, specific surface area, average pore diameter, pore volume, agglomeration degree, and amount and strength of the acidic site on the catalysts surfaces have been distinguished. From the catalytic activity evaluation, it was identified that the perovskite nanocatalyst had the best performance in NH3-SCR reaction.
Collapse
Affiliation(s)
- Vahid Zabihi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Eikani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mahdi Latifi
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Salehirad
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
12
|
Selective catalytic reduction of NO by Co-Mn based nanocatalysts. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One of the most significant aspects in selective catalytic reduction (SCR) of nitrogen oxides (NOx) is developing suitable catalysts by which the process occurs in a favorable way. At the present work SCR reaction by ammonia (NH3-SCR) was conducted using Co-Mn spinel and its composite with Fe-Mn spinel, as nanocatalysts. The nanocatalysts were fabricated through liquid routes and then their physicochemical properties such as phase composition, degree of agglomeration, particle size distribution, specific surface area and also surface acidic sites have been investigated by X-ray diffraction, Field Emission Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy, energy dispersive spectroscopy mapping, Brunauer–Emmett–Teller, temperature-programmed reduction (H2-TPR) and temperature-programmed desorption of ammonia (NH3-TPD) analysis techniques. The catalytic activity tests in a temperature window of 150–400 °C and gas hourly space velocities of 10,000, 18,000 and 30,000 h−1 revealed that almost in all studied conditions, CoMn2O4/FeMn2O4 nanocomposite exhibited better performance in SCR reaction than CoMn2O4 spinel.
Collapse
|
13
|
Top 10 Cited Papers in the Section “Environmental Catalysis”. Catalysts 2021. [DOI: 10.3390/catal11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This editorial examines the 10 most cited articles of 2018–2019 published in the “Environmental Catalysis” section of the Catalysts journal [...]
Collapse
|
14
|
Xie C, Sun Y, Zhu B, Xu M, Yu H, Liu E. Density functional theory study on the reaction mechanism of selective catalytic reduction of NO by NH3 over the γ-Fe2O3 (0 0 1) surface. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.113052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La–Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020. [DOI: 10.3390/catal10111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The catalytic performance of a series of La-Fe/AC catalysts was studied for the selective catalytic reduction (SCR) of NO by CO. With the increase in La content, the Fe2+/Fe3+ ratio and amount of surface oxygen vacancies (SOV) in the catalysts increased; thus the catalytic activity improved. Incorporating the promoters to La3-Fe1/active carbon (AC) catalyst could affect the catalyst activity by changing the electronic structure. The increase in Fe2+/Fe3+ ratio after the promoter addition is possibly due to the extra synergistic interaction of M (Mn and Ce) and Fe through the redox equilibrium of M3+ + Fe3+ ↔ M4+ + Fe2+. This phenomenon could have improved the redox cycle, enhanced the SOV formation, facilitated NO decomposition, and accelerated the CO-SCR process. The presence of O2 enhanced the formation of the C(O) complex and improved the activation of the metal site. Mn@La3-Fe1/AC catalyst revealed an excellent NO conversion of 93.8% at 400 °C in the presence of 10% oxygen. The high catalytic performance of MnOx and double exchange behavior of Mn3+ and Mn4+ can increase the number of SOV and improve the catalytic redox properties.
Collapse
|
16
|
Tian J, Li Y, Zhou X, Yao Y, Wang D, Dan J, Dai B, Wang Q, Yu F. Overwhelming low ammonia escape and low temperature denitration efficiency via MnO -decorated two-dimensional MgAl layered double oxides. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Enhancement of Low-Temperature NH3-SCR Catalytic Activity and H2O Resistance Ability Over MnOx/TiO2 Catalyst by Expanded Graphite. Catal Letters 2020. [DOI: 10.1007/s10562-020-03170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
DeNOx of Nano-Catalyst of Selective Catalytic Reduction Using Active Carbon Loading MnOx-Cu at Low Temperature. Catalysts 2020. [DOI: 10.3390/catal10010135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
With the improvement of environmental protection standards, selective catalytic reduction (SCR) has become the mainstream technology of flue gas deNOx. Especially, the low-temperature SCR nano-catalyst has attracted more and more attention at home and abroad because of its potential performance and economy in industrial applications. In this paper, low-temperature SCR catalysts were prepared using the activated carbon loading MnOx-Cu. Then, the catalysts were packed into the fiedbed stainless steel micro-reactor to evaluate the selective catalytic reduction of NO performance. The influence of reaction conditions was investigated on the catalytic reaction, including the MnOx-Cu loading amount, calcination and reaction temperature, etc. The experimental results indicate that SCR catalysts show the highest catalytic activity for NO conversion when the calcination temperature is 350 °C, MnOx loading amount is 5%, Cu loading amount is 3%, and reaction temperature is 200 °C. Under such conditions, the NO conversion arrives at 96.82% and the selectivity to N2 is almost 99%. It is of great significance to investigate the influence of reaction conditions in order to provide references for industrial application.
Collapse
|
19
|
Raja S, Alphin MS, Sivachandiran L. Promotional effects of modified TiO2- and carbon-supported V2O5- and MnOx-based catalysts for the selective catalytic reduction of NOx: a review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01348j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review presents the promotional effects of transition metal modification over TiO2- and carbon-supported V2O5- and MnOx-based SCR catalysts.
Collapse
Affiliation(s)
- S. Raja
- Department of Mechanical Engineering
- Sri Sivasubramaniya Nadar College of Engineering
- Kalavakkam 603110
- India
| | - M. S. Alphin
- Department of Mechanical Engineering
- Sri Sivasubramaniya Nadar College of Engineering
- Kalavakkam 603110
- India
| | - L. Sivachandiran
- Department of chemistry
- SRM Institute of Science and Technology
- Chennai
- India
| |
Collapse
|
20
|
Li J, Ma C, Zhu S, Yu F, Dai B, Yang D. A Review of Recent Advances of Dielectric Barrier Discharge Plasma in Catalysis. NANOMATERIALS 2019; 9:nano9101428. [PMID: 31600913 PMCID: PMC6836096 DOI: 10.3390/nano9101428] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 11/24/2022]
Abstract
Dielectric barrier discharge plasma is one of the most popular methods to generate nanthermal plasma, which is made up of a host of high-energy electrons, free radicals, chemically active ions and excited species, so it has the property of being prone to chemical reactions. Due to these unique advantages, the plasma technology has been widely used in the catalytic fields. Compared with the conventional method, the heterogeneous catalyst prepared by plasma technology has good dispersion and smaller particle size, and its catalytic activity, selectivity and stability are significantly improved. In addition, the interaction between plasma and catalyst can achieve synergistic effects, so the catalytic effect is further improved. The review mainly introduces the characteristics of dielectric barrier discharge plasma, development trend and its recent advances in catalysis; then, we sum up the advantages of using plasma technology to prepare catalysts. At the same time, the synergistic effect of plasma technology combined with catalyst on methanation, CH4 reforming, NOx decomposition, H2O2 synthesis, Fischer–Tropsch synthesis, volatile organic compounds removal, catalytic sterilization, wastewater treatment and degradation of pesticide residues are discussed. Finally, the properties of plasma in catalytic reaction are summarized, and the application prospect of plasma in the future catalytic field is prospected.
Collapse
Affiliation(s)
- Ju Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Cunhua Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Shengjie Zhu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Dezheng Yang
- Laboratory of Plasma Physical Chemistry, School of Physics, Dalian University of Technology, Dalian 116024, China.
- Key Laboratory of Ecophysics, College of Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
21
|
Expanded Two-Dimensional Layered Vermiculite Supported Nickel Oxide Nanoparticles Provides High Activity for Acetylene Carbonylation to Synthesize Acrylic Acid. Catal Letters 2019. [DOI: 10.1007/s10562-019-02985-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
A Critical Review of Recent Progress and Perspective in Practical Denitration Application. Catalysts 2019. [DOI: 10.3390/catal9090771] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitrogen oxides (NOx) represent one of the main sources of haze and pollution of the atmosphere as well as the causes of photochemical smog and acid rain. Furthermore, it poses a serious threat to human health. With the increasing emission of NOx, it is urgent to control NOx. According to the different mechanisms of NOx removal methods, this paper elaborated on the adsorption method represented by activated carbon adsorption, analyzed the oxidation method represented by Fenton oxidation, discussed the reduction method represented by selective catalytic reduction, and summarized the plasma method represented by plasma-modified catalyst to remove NOx. At the same time, the current research status and existing problems of different NOx removal technologies were revealed and the future development prospects were forecasted.
Collapse
|
23
|
Byproduct Analysis of SO2 Poisoning on NH3-SCR over MnFe/TiO2 Catalysts at Medium to Low Temperatures. Catalysts 2019. [DOI: 10.3390/catal9030265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The byproducts of ammonia-selective catalytic reduction (NH3-SCR) process over MnFe/TiO2 catalysts under the conditions of both with and without SO2 poisoning were analyzed. In addition to the NH3-SCR reaction, the NH3 oxidation and the NO oxidation reactions were also evaluated at temperatures of 100–300 °C to clarify the reactions occurred during the SCR process. The results indicated that major byproducts for the NH3 oxidation and NO oxidation tests were N2O and NO2, respectively, and their concentrations increased as the reaction temperature increased. For the NH3-SCR test without the presence of SO2, it revealed that N2O was majorly from the NH3-SCR reaction instead of from NH3 oxidation reaction. The byproducts of N2O and NO2 for the NH3-SCR reaction also increased after increasing the reaction temperature, which caused the decreasing of N2-selectivity and NO consumption. For the NH3-SCR test with SO2 at 150 °C, there were two decay stages during SO2 poisoning. The first decay was due to a certain amount of NH3 preferably reacted with SO2 instead of with NO or O2. Then the catalysts were accumulated with metal sulfates and ammonium salts, which caused the second decay of NO conversion. The effluent N2O increased as poisoning time increased, which was majorly from oxidation of unreacted NH3. On the other hand, for the NH3-SCR test with SO2 at 300 °C, the NO conversion was not decreased after increasing the poisoning time, but the N2O byproduct concentration was high. However, the SO2 led to the formation of metal sulfates, which might inhibit NO oxidation reactions and cause the concentration of N2O gradually decreased as well as the N2-selectivity increased.
Collapse
|
24
|
Structure–Activity Relationship Study of Mn/Fe Ratio Effects on Mn−Fe−Ce−Ox/γ-Al2O3 Nanocatalyst for NO Oxidation and Fast SCR Reaction. Catalysts 2018. [DOI: 10.3390/catal8120642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of Mn−Fe−Ce−Ox/γ-Al2O3 nanocatalysts were synthesized with different Mn/Fe ratios for the catalytic oxidation of NO into NO2 and the catalytic elimination of NOx via fast selective catalytic reduction (SCR) reaction. The effects of Mn/Fe ratio on the physicochemical properties of the samples were analyzed by means of various techniques including N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature-programmed reduction (TPR), NH3-temperature-programmed desorption (TPD) and NO-TPD, meanwhile, their catalytic performance was also evaluated and compared. Multiple characterizations revealed that the catalytic performance was highly dependent on the phase composition. The Mn15Fe15−Ce/Al sample with the Mn/Fe molar ratio of 1.0 presented the optimal structure characteristic among all tested samples, with the largest surface area, increased active components distributions, the reduced crystallinity and diminished particle sizes. In the meantime, the ratios of Mn4+/Mnn+, Fe2+/Fen+ and Ce3+/Cen+ in Mn15Fe15−Ce/Al samples were improved, which could enhance the redox capacity and increase the quantity of chemisorbed oxygen and oxygen vacancy, thus facilitating NO oxidation into NO2 and eventually promoting the fast SCR reaction. In accord with the structure results, the Mn15Fe15−Ce/Al sample exhibited the highest NO oxidation rate of 64.2% at 350 °C and the broadest temperature window of 75–350 °C with the NOx conversion >90%. Based on the structure–activity relationship discussion, the catalytic mechanism over the Mn−Fe−Ce ternary components supported by γ-Al2O3 were proposed. Overall, it was believed that the optimization of Mn/Fe ratio in Mn−Fe−Ce/Al nanocatalyst was an extremely effective method to improve the structure–activity relationships for NO pre-oxidation and the fast SCR reaction.
Collapse
|
25
|
|
26
|
NOx Removal by Selective Catalytic Reduction with Ammonia over a Hydrotalcite-Derived NiFe Mixed Oxide. Catalysts 2018. [DOI: 10.3390/catal8090384] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A series of NiFe mixed oxide catalysts were prepared via calcining hydrotalcite-like precursors for the selective catalytic reduction of nitrogen oxides (NOx) with NH3 (NH3-SCR). Multiple characterizations revealed that catalytic performance was highly dependent on the phase composition, which was vulnerable to the calcination temperature. The MOx phase (M = Ni or Fe) formed at a lower calcination temperature would induce more favorable contents of Fe2+ and Ni3+ and as a result contribute to the better redox capacity and low-temperature activity. In comparison, NiFe2O4 phase emerged at a higher calcination temperature, which was expected to generate more Fe species on the surface and lead to a stable structure, better high-temperature activity, preferable SO2 resistance, and catalytic stability. The optimum NiFe-500 catalyst incorporated the above virtues and afforded excellent denitration (DeNOx) activity (over 85% NOx conversion with nearly 98% N2 selectivity in the region of 210–360 °C), superior SO2 resistance, and catalytic stability.
Collapse
|
27
|
Zhao D, Wang C, Yu F, Shi Y, Cao P, Dan J, Chen K, Lv Y, Guo X, Dai B. Enhanced Oxygen Vacancies in a Two-Dimensional MnAl-Layered Double Oxide Prepared via Flash Nanoprecipitation Offers High Selective Catalytic Reduction of NO x with NH₃. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E620. [PMID: 30111727 PMCID: PMC6116200 DOI: 10.3390/nano8080620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022]
Abstract
A two-dimensional MnAl-layered double oxide (LDO) was obtained by flash nanoprecipitation method (FNP) and used for the selective catalytic reduction of NOx with NH₃. The MnAl-LDO (FNP) catalyst formed a particle size of 114.9 nm. Further characterization exhibited rich oxygen vacancies and strong redox property to promote the catalytic activity at low temperature. The MnAl-LDO (FNP) catalyst performed excellent NO conversion above 80% at the temperature range of 100⁻400 °C, and N₂ selectivity above 90% below 200 °C, with a gas hourly space velocity (GHSV) of 60,000 h-1, and a NO concentration of 500 ppm. The maximum NO conversion is 100% at 200 °C; when the temperature in 150⁻250 °C, the NO conversion can also reach 95%. The remarkable low-temperature catalytic performance of the MnAl-LDO (FNP) catalyst presented potential applications for controlling NO emissions on the account of the presentation of oxygen vacancies.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Chao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Yulin Shi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Peng Cao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Kai Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yin Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xuhong Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
28
|
Wang C, Yu F, Zhu M, Shi Y, Dan J, Lv Y, Guo X, Dai B. Up-scaled flash nano-precipitation production route to develop a MnOx–CeO2–Al2O3 catalyst with enhanced activity and H2O resistant performance for NOx selective catalytic reduction with NH3. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|