1
|
Gao Y, Jiang M, Yang L, Li Z, Tian FX, He Y. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Front Chem 2022; 10:959422. [PMID: 36003612 PMCID: PMC9393236 DOI: 10.3389/fchem.2022.959422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4) is one of the cleanest fossil fuel resources and is playing an increasingly indispensable role in our way to carbon neutrality, by providing less carbon-intensive heat and electricity worldwide. On the other hand, the atmospheric concentration of CH4 has raced past 1,900 ppb in 2021, almost triple its pre-industrial levels. As a greenhouse gas at least 86 times as potent as carbon dioxide (CO2) over 20 years, CH4 is becoming a major threat to the global goal of deviating Earth temperature from the +2°C scenario. Consequently, all CH4-powered facilities must be strictly coupled with remediation plans for unburned CH4 in the exhaust to avoid further exacerbating the environmental stress, among which catalytic CH4 combustion (CMC) is one of the most effective strategies to solve this issue. Most current CMC catalysts are noble-metal-based owing to their outstanding C–H bond activation capability, while their high cost and poor thermal stability have driven the search for alternative options, among which transition metal oxide (TMO) catalysts have attracted extensive attention due to their Earth abundance, high thermal stability, variable oxidation states, rich acidic and basic sites, etc. To date, many TMO catalysts have shown comparable catalytic performance with that of noble metals, while their fundamental reaction mechanisms are explored to a much less extent and remain to be controversial, which hinders the further optimization of the TMO catalytic systems. Therefore, in this review, we provide a systematic compilation of the recent research advances in TMO-based CMC reactions, together with their detailed reaction mechanisms. We start with introducing the scientific fundamentals of the CMC reaction itself as well as the unique and desirable features of TMOs applied in CMC, followed by a detailed introduction of four different kinetic reaction models proposed for the reactions. Next, we categorize the TMOs of interests into single and hybrid systems, summarizing their specific morphology characterization, catalytic performance, kinetic properties, with special emphasis on the reaction mechanisms and interfacial properties. Finally, we conclude the review with a summary and outlook on the TMOs for practical CMC applications. In addition, we also further prospect the enormous potentials of TMOs in producing value-added chemicals beyond combustion, such as direct partial oxidation to methanol.
Collapse
Affiliation(s)
- Yuan Gao
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Mingxin Jiang
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Liuqingqing Yang
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Zhuo Li
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
| | - Fei-Xiang Tian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Yulian He
- UM-SJTU Joint Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yulian He,
| |
Collapse
|
2
|
Effect of Tourmaline Addition on the Catalytic Performance and SO2 Resistance of NixMn3−xO4 Catalyst for NH3-SCR Reaction at Low Temperature. Catal Letters 2021. [DOI: 10.1007/s10562-021-03585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Catalytic Oxidation of Methane. Catalysts 2021. [DOI: 10.3390/catal11080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methane (the major component of natural gas) is one of the main energy sources for gas-powered turbines for power generation, and transport vehicles [...]
Collapse
|
4
|
Zhao G, Li M, Wang L, Wang D, Liang J, Xue G. Environmentally-friendly tourmaline modified CeMnFeOx catalysts for low-temperature selective catalytic reduction of NOx with NH3. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Comparative Study of the Characteristics and Activities of Pd/γ-Al2O3 Catalysts Prepared by Vortex and Incipient Wetness Methods. Catalysts 2019. [DOI: 10.3390/catal9040336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5 wt% Pd/γ-Al2O3 catalysts were prepared by a modified Vortex Method (5-Pd-VM) and Incipient Wetness Method (5-Pd-IWM), and characterized by various techniques (Inductively coupled plasma atomic emission spectroscopy (ICP-AES), N2-physisorption, pulse CO chemisorption, temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray diffraction (XRD)) under identical conditions. Both catalysts had similar particle sizes and dispersions; the 5-Pd-VM catalyst had 0.5 wt% more Pd loading (4.6 wt%). The surfaces of both catalysts contained PdO and PdOx with about 7% more PdOx in 5-Pd-VM. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and scanning electron microscope (SEM) images indicated presence of PdO/PdOx nanocrystals (8–10 nm) on the surface of the support. Size distribution by STEM showed presence of smaller nanoparticles (2–5 nm) in 5-Pd-VM. This catalyst was more active in the lower temperature range of 275–325 °C and converted 90% methane at 325 °C. The 5-Pd-VM catalyst was also very stable after 72-hour stability test at 350 °C showing 100% methane conversion, and was relatively resistant to steam deactivation. Hydrogen TPR of 5-Pd-VM gave a reduction peak at 325 °C indicating weaker interactions of the oxidized Pd species with the support. It is hypothesized that smaller particle sizes, uniform particle distribution, and weaker PdO/PdOx interactions with the support may contribute to the higher activity in 5-Pd-VM.
Collapse
|
6
|
Low-Temperature Activity and PdO-PdOx Transition in Methane Combustion by a PdO-PdOx/γ-Al2O3 Catalyst. Catalysts 2018. [DOI: 10.3390/catal8070266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|