Rajan D, Amrutha M, George S, Susmitha A, Anburaj AA, Nampoothiri KM. Molecular cloning, overexpression, characterization, and In silico modelling analysis of a novel GDSL autotransporter-dependent outer membrane lipase (OML) of Pseudomonas guariconensis.
Int J Biol Macromol 2024;
255:128050. [PMID:
37992946 DOI:
10.1016/j.ijbiomac.2023.128050]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
The outer membrane lipase (oml) gene, encoding a novel autotransporter-dependent lipase from Pseudomonas guariconensis, was cloned and sequenced. The oml gene has an open reading frame of 1866 bp. It encodes the 621 amino acid autotransporter-dependent GDSL lipase (OML), which has the highest sequence similarity (64.08 %) with the EstA of Pseudomonas aeruginosa (PDB:3kvn.1. A). OML was expressed and purified, which showed a purified band of approximately 70 kDa. The purified enzyme showed maximum activity at pH 9 and 40 °C. Substrate specificity studies and kinetic study by Lineweaver-Burk plot of purified OML showed Km of 1.27 mM and Vmax of 333.33 U/mL with p-nitrophenyl palmitate. The purified enzyme showed good stability in the presence of hexane, methanol, and ethanol, while the presence of the metal ion Mg2+ showed maximum lipase activity. Bioinformatics analysis supported the in vitro findings by predicting enzyme substrate specificity towards long-chain fatty acids and fatty acids with shorter chain lengths. The stability of the interaction of the protein-ligand complex (OML-ricinoleic acid) was confirmed using MDS and castor oil bioconversion using purified OML was confirmed using High-Performance Liquid Chromatography (HPLC).
Collapse