1
|
Cruz TFC, Loupy V, Veiros LF. Zinc-Catalyzed Hydroboration of Carbon Dioxide Amplified by Borane-Tethered Heteroscorpionate Bis(Pyrazolyl)methane Ligands. Inorg Chem 2024; 63:8244-8256. [PMID: 38656156 PMCID: PMC11080050 DOI: 10.1021/acs.inorgchem.4c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The borane-functionalized (BR2) bis(3,5-dimethylpyrazolyl)methane (LH) ligands 1a (BR2: 9-borabicyclo[3.3.1]nonane or 9-BBN), 1b (BR2: BCy2), and 1c (BR2: B(C6F5)2) were synthesized by the allylation-hydroboration of LH. Metalation of 1a,b with ZnCl2 yielded the heteroscorpionate dichloride complexes [(1a,b)ZnCl2] 3a,b. The reaction of 1a with ZnEt2 led to the formation of the zwitterionic complex [Et(1a)ZnEt(THF)] 5. The reaction of complex 3a with two equivalents of KHBEt3 under a carbon dioxide (CO2) atmosphere gave rise to the formation of the dimeric bis(formate) complex [(1a)Zn(OCHO)2]2 8, in which its borane moieties intermolecularly stabilize the formate ligands of opposite metal centers. The allylated precursor Lallyl and its zinc dichloride, diethyl and bis(formate) complexes [(Lallyl)ZnCl2] 2, [(Lallyl)ZnEt2] 4, and [(Lallyl)Zn(OCHO)2] 7 were also isolated. The catalyst systems composed of 1 mol % of 3a or 3b and two equivalents of KHBEt3 hydroborated CO2 at 1 bar with pinacolborane (HBPin) to the methanol-level product H3COBPin (and PinBOBPin) in yields of 42 or 86%, respectively. The catalyst systems using the unfunctionalized complex [(LH)ZnCl2] 6 and KHBEt3 or KHBEt3/nOctBR2 (BR2: 9-BBN or BCy2) hydroborated CO2 to H3COBPin but in 2.5- to 6-fold lower activities than those exhibited by 3a,b/KHBEt3. The hydroboration of CO2 using 8 as a catalyst led to yields of 39-43%, comparable to those obtained with 3a/KHBEt3. The results confirmed that the catalytic intermediates benefit from the incorporated boranes' intra- or intermolecular stabilizations.
Collapse
Affiliation(s)
- Tiago F. C. Cruz
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Valentin Loupy
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Luís F. Veiros
- Centro de Química
Estrutural, Institute of Molecular Sciences, Departamento de Engenharia
Química, Instituto Superior Técnico,
Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| |
Collapse
|
2
|
Fang F, Zhang J. Notable Catalytic Activity of Transition Metal Thiolate Complexes against Hydrosilylation and Hydroboration of Carbon-Heteroatom Bonds. Chem Asian J 2023; 18:e202201181. [PMID: 36545848 DOI: 10.1002/asia.202201181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Chemists tend to use transition metal hydride complexes rather than thiolate complexes to catalyse chemical transformations because the hydride complexes possess diverse catalytic reactivity, although most of them are air/moisture-sensitive and difficult to prepare. By comparing the catalytic performances of pincer ligated group 10 metal thiolate and hydride complexes in catalysing the hydroboration and hydrosilylation of C=O and C=N bonds, we demonstrate in this review that transition metal thiolate complexes are much better catalysts than the corresponding hydride complexes in catalysing this type of reactions. Many hydroboration and hydrosilylation reactions catalysed by pincer ligated group 10 metal hydride complexes can also be catalysed by the corresponding thiolate complexes and the thiolate systems are far more active. Therefore, the applications of transition metal thiolate complexes in the catalytic hydroboration and hydrosilylation of unsaturated carbon-heteroatom bonds deserve special attention in future work.
Collapse
Affiliation(s)
- Fei Fang
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang, Henan, 453003, P. R. China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and, Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
3
|
The catalytic activity difference of bis(phosphinite) pincer ligated Pt(II) thiolate and hydride complexes against hydrosilylation of aldimines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Xue MM, Chang J, Zhang J, Chen X. Platinum thiolate complexes supported by PBP and POCOP pincer ligands as efficient catalysts for the hydrosilylation of carbonyl compounds. Dalton Trans 2022; 51:2304-2312. [PMID: 35041735 DOI: 10.1039/d1dt04179g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diphosphino-boryl-based PBP pincer platinum thiolate complexes, [Pt(SR){B(NCH2PtBu2)2-1,2-C6H4}] (R = H, 1a; Ph, 1b), and benzene-based bisphosphinite POCOP pincer platinum thiolate complexes, [Pt(SR)(tBu2PO)2-1,3-C6H3] (R = H, 2a; Ph, 2b), were prepared and fully characterized by multinuclear NMR, X-ray crystallography, HRMS and elemental analyses. The application of these complexes in the catalytic hydrosilylation of aldehydes and ketones was investigated. It was found that these platinum thiolate complexes are efficient catalysts for the hydrosilylation of aldehydes and ketones at 65-75 °C. Comparatively, the PBP complexes are more active than the corresponding POCOP complexes. Both phenylsilane and polymethylhydrosiloxane (PMHS) can be used as silyl reagents. The expected alcohols were obtained in good to excellent yields after the basic hydrolysis of the hydrosilylation products and many functional groups were not affected. With turnover frequencies (TOFs) of up to 67 000 h-1, the present catalytic system represents the most effective platinum catalytic system for the hydrosilylation of carbonyl compounds. The reactions were likely catalysed by the in situ generated platinum hydride species.
Collapse
Affiliation(s)
- Man-Man Xue
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. .,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
6
|
Fang F, Kang JX, Xu CQ, Chang J, Zhang J, Li S, Chen X. Which Type of Pincer Complex Is Thermodynamically More Stable? Understanding the Structures and Relative Bond Strengths of Group 10 Metal Complexes Supported by Benzene-Based PYCYP Pincer Ligands. Inorg Chem 2021; 60:18924-18937. [PMID: 34878759 DOI: 10.1021/acs.inorgchem.1c02722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of the pincer platform composition and substitution on the reactivity and physical properties of pincer complexes can be easily explored through different experimental techniques. However, the influence of these factors on the molecular structures and thermodynamic stability of pincer complexes is usually very subtle and cannot always be unambiguously established. To rationalize this subtle influence, a survey of crystallographic data from 130 group 10 metal pincer complexes supported by benzene-based PYCYP pincer ligands, [2,6-(R2PY)2C6H3-nR'n]MX (Y = CH2, NH, O, S; M = Ni, Pd, Pt; R = tBu, iPr, Ph, Cy, Me; R' = CO2Me, tBu, CF3, Ac; n = 0-2; X = F, Cl, Br, I, H, SH, SPh, SBn, Ph, Me, N3, NCS), was carried out. Theoretical calculations for some selected complexes were performed to evaluate the relative bond strength. It was found that the M-Cipso bond length decreases following the linker series of CH2 > NH > O and that the relative M-Cipso bond strength increases following the linker series of CH2 < NH < O. In most cases, the M-P bond length decreases following the linker series of NH > CH2 > O. The relative M-P bond strength increases following the linker series of CH2 < NH < O. A comparison of the thermochemical balance for the isodesmic displacement of the side-arm interactions with PH3 as a probe ligand indicated that the Ni-P bond in a PCCCP-type pincer complex is far less difficult to break compared with that in a POCOP-type complex. As a result, with the same donor substituents and the same auxiliary ligand, the POCOP-type pincer complexes are thermodynamically more stable than the PCCCP complexes. The influence of other backbone and donor substitutions as well as the pincer platform composition on the M-Cipso, M-P, and M-X bond lengths, relative bond strengths, and P-M-P bite angles was also discussed.
Collapse
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Xin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Cong-Qiao Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
7
|
Fang F, Chang J, Zhang J, Chen X. An Effective Osmium Precatalyst for Practical Synthesis of Diarylketones: Preparation, Reactivity, and Catalytic Application of [OsH- cis-(CO) 2- mer-{κ 3- P, B, P′-B(NCH 2PPh 2) 2- o-C 6H 4}]. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
8
|
Ni-Containing Catalysts. Catalysts 2021. [DOI: 10.3390/catal11050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Murray Raney used Nickel for the first time as a hydrogenation catalyst over one century ago [...]
Collapse
|
9
|
Efficient Solvent-Free Hydrosilylation of Aldehydes and Ketones Catalyzed by Fe2(CO)9/C6H4-o-(NCH2PPh2)2BH. Catal Letters 2021. [DOI: 10.1007/s10562-021-03578-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Abstract
The use of CO2 as a C1 building block for chemical synthesis is receiving growing attention, due to the potential of this simple molecule as an abundant and cheap renewable feedstock. Among the possible reductants used in the literature to bring about CO2 reduction to C1 derivatives, hydroboranes have found various applications, in the presence of suitable homogenous catalysts. The current minireview article summarizes the main results obtained since 2016 in the synthetic design of main group, first and second row transition metals for use as catalysts for CO2 hydroboration.
Collapse
|
11
|
Arora V, Narjinari H, Nandi PG, Kumar A. Recent advances in pincer-nickel catalyzed reactions. Dalton Trans 2021; 50:3394-3428. [PMID: 33595564 DOI: 10.1039/d0dt03593a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organometallic catalysts have played a key role in accomplishing numerous synthetically valuable organic transformations that are either otherwise not possible or inefficient. The use of precious, sparse and toxic 4d and 5d metals are an apparent downside of several such catalytic systems despite their immense success over the last several decades. The use of complexes containing Earth-abundant, inexpensive and less hazardous 3d metals, such as nickel, as catalysts for organic transformations has been an emerging field in recent times. In particular, the versatile nature of the corresponding pincer-metal complexes, which offers great control of their reactivity via countless variations, has garnered great interest among organometallic chemists who are looking for greener and cheaper alternatives. In this context, the current review attempts to provide a glimpse of recent developments in the chemistry of pincer-nickel catalyzed reactions. Notably, there have been examples of pincer-nickel catalyzed reactions involving two electron changes via purely organometallic mechanisms that are strikingly similar to those observed with heavier Pd and Pt analogues. On the other hand, there have been distinct differences where the pincer-nickel complexes catalyze single-electron radical reactions. The applicability of pincer-nickel complexes in catalyzing cross-coupling reactions, oxidation reactions, (de)hydrogenation reactions, dehydrogenative coupling, hydrosilylation, hydroboration, C-H activation and carbon dioxide functionalization has been reviewed here from synthesis and mechanistic points of view. The flurry of global pincer-nickel related activities offer promising avenues in catalyzing synthetically valuable organic transformations.
Collapse
Affiliation(s)
- Vinay Arora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. and Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
12
|
Xie S, Zhang W, Lan X, Lin H. CO 2 Reduction to Methanol in the Liquid Phase: A Review. CHEMSUSCHEM 2020; 13:6141-6159. [PMID: 33137230 DOI: 10.1002/cssc.202002087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Indexed: 05/19/2023]
Abstract
Excessive carbon dioxide (CO2 ) emissions have been subject to extensive attention globally, since an enhanced greenhouse effect (global warming) owing to a high CO2 concentration in the atmosphere could lead to severe climate change. The use of solar energy and other renewable energy to produce low-cost hydrogen, which is used to reduce CO2 to produce bulk chemicals such as methanol, is a sustainable strategy for reducing carbon dioxide emissions and carbon resources. CO2 conversion into methanol is exothermic, so that low temperature and high pressure are favorable for methanol formation. CO2 is usually captured and recovered in the liquid phase. Herein, the emerging technologies for the hydrogenation of CO2 to methanol in the condensed phase are reviewed. The development of homogeneous and heterogeneous catalysts for this important hydrogenation reaction is summarized. Finally, mechanistic insight on CO2 's conversion into methanol over different catalysts is discussed by taking the available reaction pathways into account.
Collapse
Affiliation(s)
- Shaoqu Xie
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wanli Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xingying Lan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Hongfei Lin
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
13
|
Fang F, Chang J, Kang J, Zhang J, Li S, Chen X. A Structure Comparison of Ni(II) Complexes Supported by PNCNP and POCOP Pincer Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202001413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jiaxin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy MaterialsKey Laboratory of Green Chemical Media and ReactionsMinistry of EducationCollaborative Innovation Centre of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou Henan 450001 China)
| |
Collapse
|
14
|
Ding Y, Ma QQ, Kang J, Zhang J, Li S, Chen X. Palladium(ii) complexes supported by PBP and POCOP pincer ligands: a comparison of their structure, properties and catalytic activity. Dalton Trans 2019; 48:17633-17643. [PMID: 31755493 DOI: 10.1039/c9dt03954f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A Pd(ii) chloride complex supported by a Yamashita-Nozaki PBP pincer ligand, [C6H4-1,2-(NCH2PtBu2)2B]PdCl (1a), was synthesized. The structure, properties and catalytic activity of complex 1a were compared with those of the corresponding POCOP pincer complex [C6H3-2,6-(OPtBu2)2]PdCl (2a). It was found that the Pd centre in complex 1a is more electron rich and easier to be oxidized than that in complex 2a; complex 1a is a much better catalyst for Suzuki-Miyaura cross-coupling reactions than complex 2a. Starting from complexes 1a and 2a, two series of Pd(ii) pincer complexes bearing a SH, BH4, N[combining low line]CS, N[combining low line]CSe or N3 covalent ligand, [C6H4-1,2-(NCH2PtBu2)2B]PdY (Y = SH, 1b; BH4; 1c; N[combining low line]CS, 1d; N[combining low line]CSe, 1e; and N3, 1f) and [C6H3-2,6-(OPtBu2)2]PdY (Y = SH, 2b; BH4, 2c; N[combining low line]CS, 2d; N[combining low line]CSe, 2e; and N3, 2f), were synthesized and fully characterized. Single crystal X-ray diffraction analysis indicated that the Pd centre is less tightly chelated in PBP pincer complexes. The strong σ-donor ability of the PBP pincer ligand has little influence on the structure of the covalent ligand possessing both σ-donor and π-acceptor properties. However, the stretching vibrational frequencies of N[combining low line]CS, N[combining low line]CSe and N3 ligands and the coordination mode of the BH4 ligand are significantly different in these two types of palladium pincer complexes.
Collapse
Affiliation(s)
- Yazhou Ding
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | |
Collapse
|
15
|
Lanorio JP, Frost BJ. Insertion reactions of heteroallenes (CS2 and CO2) into the Ru-H bond of Cp′Ru(PTA)(PR3)H complexes (PTA = 1,3,5-triaza-7-phosphaadamantane). Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Importance of thorough conformational analysis in modelling transition metal-mediated reactions: Case studies on pincer complexes containing phosphine groups. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Cao B, Ding Y, Fang F, Chang J, Zhang J, Li S, Chen X. The stability of group 10 metal POCOP pincer complexes: decomposition/reconstruction pathways of the pincer backbone. Dalton Trans 2019; 48:13760-13768. [PMID: 31475715 DOI: 10.1039/c9dt02825k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organometallic chemists usually like to use the word robust to describe pincer ligand frameworks in metal pincer complexes. Although most transition metal pincer complexes are thermally stable, the pincer backbone frameworks can still decompose under certain circumstances. In order to explore the stability of the bis(phosphinite) (POCOP) pincer backbone in transition metal pincer complexes, group 10 metal POCOP pincer complexes were exposed to different nucleophilic and electrophilic conditions, respectively. It was found that the POCOP pincer backbone is stable under intermolecular nucleophilic conditions but cannot survive intramolecular nucleophilic attack; the POCOP pincer backbone is also stable under weak electrophilic conditions but the backbone can be completely destroyed by strong Lewis acids such as AlCl3. Possible decomposition/reconstruction pathways of the POCOP pincer ligand framework were proposed.
Collapse
Affiliation(s)
- Bula Cao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
19
|
Zhang J, Ding Y, Ma QQ, Cao B, Chang J, Li S, Chen X. Reactions of POCOP pincer palladium benzylthiolate complexes with BH3·THF: Isolation and characterization of unstable POCOP-Pd(η1-HBH3) complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Zhang J, Cao B, Ding Y, Chang J, Li S, Chen X. Syntheses and Structures of Group 10 Metal POCOP Pincer Complexes Bearing A Mercapto-o-
carborane Auxiliary Ligand. ChemistrySelect 2019. [DOI: 10.1002/slct.201803908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Bula Cao
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Yazhou Ding
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Jiarui Chang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Shujun Li
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials; Henan Normal University Xinxiang; Henan 453007 China
| |
Collapse
|