1
|
Prasertcharoensuk P, Promtongkaew A, Tawatchai M, Marquez V, Jongsomjit B, Tahir M, Praserthdam S, Praserthdam P. A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur. CHEMOSPHERE 2022; 301:134579. [PMID: 35413367 DOI: 10.1016/j.chemosphere.2022.134579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Hydrogen sulfide (H2S) is a critical problem for biogas applications, such as electricity and heat generation, or the production of different chemical compounds, due to corrosion and toxic effluent gases. The selective catalytic oxidation of H2S to S is the most promising way to eliminate H2S from biogas due to the lack of effluents, therefore can be considered a green technology. The most extensively used catalysts for H2S selective oxidation can be classified in two groups: metal oxide-based catalysts, including vanadium and iron oxides, and carbon-based catalysts. Numerous studies have been devoted to studying their different catalytic performances. For industrial applications, the most suitable catalysts should be less sensitive to the operating parameters like the temperature, O2/H2S ratio, and H2O content. More specifically, for metal oxides and carbon-based catalysts, the temperature and O2/H2S ratio have a similar effect on the conversion and selectivity, but carbon-based catalysts are less sensitive to water in all operating conditions.
Collapse
Affiliation(s)
- Phuet Prasertcharoensuk
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Athitaya Promtongkaew
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Makamas Tawatchai
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Victor Marquez
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Bunjerd Jongsomjit
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, 15551, Al Ain, United Arab Emirates
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; High-Performance Computing Unit (CECC-HCU), Centre of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Faizan M, Li H, Liu Y, Li K, Wei S, Zhang R, Liu R. Copper-based deep eutectic solvents (Cu-DES) assisted the VPO catalyst as a structural and electronic promoter for n-butane selective oxidation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
3
|
Abstract
During the last two decades, electrospinning has become a very popular technique for the fabrication of nanofibers due to its low cost and simple handling. Nanofiber materials have found utilization in many areas such as medicine, sensors, batteries, etc. In catalysis, these materials also present important advantages, since they present a low resistance to internal diffusion and a high surface area to volume ratio. These advantages are mainly due to the diameter–length proportion. A bibliographic analysis on the applications of electrospun nanofibers in catalysis shows that there are two important groups of catalysts that are being investigated, based on TiO2 and in carbon materials. The main applications found are in photo- and in electro-catalysis. The present study contributes by reviewing these catalytic applications of electrospun nanofibers and demonstrating that they are promising materials as catalysts, underlining some works to prove the advantages and possibilities that these materials have as catalysts. On one hand, the possibilities of synthesis are almost infinite, since with coaxial electrospinning quite complex nanofibers with different layers can be prepared. On the other hand, the diameter and other properties can be controlled by monitoring the applied voltage and other parameters during the synthesis, being quite reproducible procedures. The main advantages of these materials can be grouped in two: one related to their morphology, as has been commented, relative to their low resistance and internal diffusion, that is, their fluidynamic behavior in the reactor; the second group involves advantages related to the fact that the active phases can be nanoscaled and dispersed, improving the activity and selectivity in comparison with conventional catalytic materials with the same chemical composition.
Collapse
|
4
|
Iglesias‐Juez A, Chiarello GL, Patience GS, Guerrero‐Pérez MO. Experimental methods in chemical engineering:
X
‐ray absorption spectroscopy—
XAS
,
XANES
,
EXAFS. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
How Chemoresistive Sensors Can Learn from Heterogeneous Catalysis. Hints, Issues, and Perspectives. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The connection between heterogeneous catalysis and chemoresistive sensors is emerging more and more clearly, as concerns the well-known case of supported noble metals nanoparticles. On the other hand, it appears that a clear connection has not been set up yet for metal oxide catalysts. In particular, the catalytic properties of several different oxides hold the promise for specifically designed gas sensors in terms of selectivity towards given classes of analytes. In this review, several well-known metal oxide catalysts will be considered by first exposing solidly established catalytic properties that emerge from related literature perusal. On this basis, existing gas-sensing applications will be discussed and related, when possible, with the obtained catalysis results. Then, further potential sensing applications will be proposed based on the affinity of the catalytic pathways and possible sensing pathways. It will appear that dialogue with heterogeneous catalysis may help workers in chemoresistive sensors to design new systems and to gain remarkable insight into the existing sensing properties, in particular by applying the approaches and techniques typical of catalysis. However, several divergence points will appear between metal oxide catalysis and gas-sensing. Nevertheless, it will be pointed out how such divergences just push to a closer exchange between the two fields by using the catalysis knowledge as a toolbox for investigating the sensing mechanisms.
Collapse
|
6
|
Guerrero‐Pérez MO, Patience GS, Bañares MA. Experimental methods in chemical engineering:
Raman
spectroscopy. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Bonilla-Represa V, Abalos-Labruzzi C, Herrera-Martinez M, Guerrero-Pérez MO. Nanomaterials in Dentistry: State of the Art and Future Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1770. [PMID: 32906829 PMCID: PMC7557393 DOI: 10.3390/nano10091770] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials are commonly considered as those materials in which the shape and molecular composition at a nanometer scale can be controlled. Subsequently, they present extraordinary properties that are being useful for the development of new and improved applications in many fields, including medicine. In dentistry, several research efforts are being conducted, especially during the last decade, for the improvement of the properties of materials used in dentistry. The objective of the present article is to offer the audience a complete and comprehensive review of the main applications that have been developed in dentistry, by the use of these materials, during the last two decades. It was shown how these materials are improving the treatments in mainly all the important areas of dentistry, such as endodontics, periodontics, implants, tissue engineering and restorative dentistry. The scope of the present review is, subsequently, to revise the main applications regarding nano-shaped materials in dentistry, including nanorods, nanofibers, nanotubes, nanospheres/nanoparticles, and zeolites and other orders porous materials. The results of the bibliographic analysis show that the most explored nanomaterials in dentistry are graphene and carbon nanotubes, and their derivatives. A detailed analysis and a comparative study of their applications show that, although they are quite similar, graphene-based materials seem to be more promising for most of the applications of interest in dentistry. The bibliographic study also demonstrated the potential of zeolite-based materials, although the low number of studies on their applications shows that they have not been totally explored, as well as other porous nanomaterials that have found important applications in medicine, such as metal organic frameworks, have not been explored. Subsequently, it is expected that the research effort will concentrate on graphene and zeolite-based materials in the coming years. Thus, the present review paper presents a detailed bibliographic study, with more than 200 references, in order to briefly describe the main achievements that have been described in dentistry using nanomaterials, compare and analyze them in a critical way, with the aim of predicting the future challenges.
Collapse
Affiliation(s)
- Victoria Bonilla-Represa
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | | - Manuela Herrera-Martinez
- Departamento de Operatoria Dental y Endodoncia, Universidad de Sevilla, E-41009 Sevilla, Spain; (V.B.-R.); (M.H.-M.)
| | | |
Collapse
|
8
|
Oxidative dehydrogenation of propane over alumina supported vanadia catalyst – Effect of carbon dioxide and secondary surface metal oxide additive. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
|
10
|
Avasthi K, Bohre A, Grilc M, Likozar B, Saha B. Advances in catalytic production processes of biomass-derived vinyl monomers. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00598c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides a summary and perspective for three bio-derived vinyl monomers – acrylic acid, methacrylic acid and styrene.
Collapse
Affiliation(s)
- Kalpana Avasthi
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Ashish Bohre
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Miha Grilc
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Basudeb Saha
- Catalysis Center for Energy Innovation
- University of Delaware
- Newark
- USA
- RiKarbon, Inc
| |
Collapse
|
11
|
Li G, Wang L, Wen C, Li F, Wu P, Wang B, Shen K, Zhang Y, Zhang S, Xiao R. Deep insight into the catalytic removal mechanism of a multi-active center catalyst for chlorobenzene: an experiment and density functional theory study. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01372b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic oxidation is a promising dioxin purification removal technique due to high efficiency and low consumption, as well as no secondary pollution.
Collapse
|
12
|
López-Medina R, Guerrero-Pérez MO, Bañares MA. Nanosized-bulk V-containing mixed-oxide catalysts: a strategy for the improvement of the catalytic materials properties. NEW J CHEM 2019. [DOI: 10.1039/c9nj01637f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of nanosized-bulk-supported Mo–V–Nb–Te catalysts was prepared. Using a new synthesis approach, nanocrystalline aggregates of the active phase were deposited on a support.
Collapse
Affiliation(s)
- Ricardo López-Medina
- Catalytic Spectroscopy Laboratory Instituto de Catálisis y Petroleoquímica
- CSIC Marie Curie, 2
- E-28049-Madrid
- Spain
| | - M. Olga Guerrero-Pérez
- Dr. M. Olga Guerrero-Pérez Departamento de Ingeniería Química Universidad de Málaga – Andalucia Tech
- E-29071-Málaga
- Spain
| | - Miguel A. Bañares
- Catalytic Spectroscopy Laboratory Instituto de Catálisis y Petroleoquímica
- CSIC Marie Curie, 2
- E-28049-Madrid
- Spain
| |
Collapse
|