1
|
Han N, Wang Y, Su BL. Unveiling oscillatory nature for sustainable fuel production. Natl Sci Rev 2024; 11:nwae068. [PMID: 38577665 PMCID: PMC10989655 DOI: 10.1093/nsr/nwae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Ning Han
- Department of Materials Engineering, KU Leuven, Belgium
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, China
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, China
| |
Collapse
|
2
|
El Khawaja R, Sonar S, Barakat T, Heymans N, Su BL, Löfberg A, Lamonier JF, Giraudon JM, De Weireld G, Poupin C, Cousin R, Siffert S. VOCs catalytic removal over hierarchical porous zeolite NaY supporting Pt or Pd nanoparticles. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Murindababisha D, Yusuf A, Sun Y, Wang C, Ren Y, Lv J, Xiao H, Chen GZ, He J. Current progress on catalytic oxidation of toluene: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62030-62060. [PMID: 34570323 DOI: 10.1007/s11356-021-16492-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Toluene is one of the pollutants that are dangerous to the environment and human health and has been sorted into priority pollutants; hence, the control of its emission is necessary. Due to severe problems caused by toluene, different techniques for the abatement of toluene have been developed. Catalytic oxidation is one of the promising methods and effective technologies for toluene degradation as it oxidizes it to CO2 and does not deliver other pollutants to the environment. This paper highlights the recent progressive advancement of the catalysts for toluene oxidation. Five categories of catalysts, including noble metal catalysts, transition metal catalysts, perovskite catalysts, metal-organic frameworks (MOFs)-based catalysts, and spinel catalysts reported in the past half a decade (2015-2020), are reviewed. Various factors that influence their catalytic activities, such as morphology and structure, preparation methods, specific surface area, relative humidity, and coke formation, are discussed. Furthermore, the reaction mechanisms and kinetics for catalytic oxidation of toluene are also discussed.
Collapse
Affiliation(s)
- David Murindababisha
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, People's Republic of China
| | - Abubakar Yusuf
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, People's Republic of China
| | - Yong Sun
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, People's Republic of China.
| | - Yong Ren
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo, People's Republic of China
| | - Jungang Lv
- Procuratoral Technology and Information Research Center, Supreme People's Procuratorate, Beijing, People's Republic of China
| | - Hang Xiao
- Centre for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
| | - George Zheng Chen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, People's Republic of China.
| |
Collapse
|
4
|
Cong Trung B, Nguyen Quang Tu L, Tran Minh Tri N, Thanh An N, Quang Long N. Granular-carbon supported nano noble-metal (Au, Pd, Au-Pd): new dual-functional adsorbent/catalysts for effective removal of toluene at low-temperature and humid condition. ENVIRONMENTAL TECHNOLOGY 2021; 42:1772-1786. [PMID: 31622175 DOI: 10.1080/09593330.2019.1680742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Treatment of the volatile organic compounds (VOCs) especially aromatic compounds such as toluene at low temperature and in the highly humid condition is currently a great challenge. New dual functional adsorbent/catalysts have been developed in this study to minimize the mass-transfer limitation at low temperature. The ready-to-practically-use materials, which consisted nano-sized noble metal (Au, Pd, Au-Pd) supported on granular carbon (GC) have been prepared using a metal-sol method. The surface morphology, and structure of these granular materials were characterized to confirm the presence of nano-sized noble metal on the GC as well as the properties of the dual functional adsorbent/catalyst. The results of catalytic performance revealed that the presence of Pd played an important role in the formation of nano Au particles, which were the catalytic active-site for toluene oxidation. At 60% relative humidity and 150°C the dual functional adsorbent/catalyst, Au-Pd/GC, exhibited 97.2% toluene removal. Importantly, the kinetic analysis for the catalytic oxidation of nano-sized 0.5%Au-0.27%Pd/GC catalyst showed that the Langmuir-Hinshelwood mechanism provided a good fit towards the experimental data and allowed to determine the kinetic parameters of the reaction-rate law -rA=k⋅KA⋅CA1+KA⋅CA⋅KO2⋅CO21+KO2.CO2. The activation energy, adsorption enthalpy of toluene, and oxygen on the catalyst were reported.
Collapse
Affiliation(s)
- Bien Cong Trung
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology - VNU- HCM, Ho Chi Minh City, Vietnam
| | - Le Nguyen Quang Tu
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology - VNU- HCM, Ho Chi Minh City, Vietnam
| | - Nguyen Tran Minh Tri
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology - VNU- HCM, Ho Chi Minh City, Vietnam
| | - Ngo Thanh An
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology - VNU- HCM, Ho Chi Minh City, Vietnam
| | - Nguyen Quang Long
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology - VNU- HCM, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Slinko MM, Makeev AG. Heterogeneous Catalysis and Nonlinear Dynamics. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420040114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ren S, Liang W, Li Q, Zhu Y. Effect of Pd/Ce loading on the performance of Pd-Ce/γ-Al 2O 3 catalysts for toluene abatement. CHEMOSPHERE 2020; 251:126382. [PMID: 32443238 DOI: 10.1016/j.chemosphere.2020.126382] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
A single metal Pd/γ-Al2O3 catalyst and a bimetallic Pd-Ce/γ-Al2O3 catalyst were prepared by the equal-volume impregnation method to investigate the effect of CeO2 loading on the catalytic oxidation of toluene. The specific surface area, surface morphology, and redox performance of the catalyst were characterized by N2 desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), H2-TPR, O2-TPD, and electron paramagnetic resonance (EPR). The results showed that bimetal catalysts loaded CeO2 had smaller nano-PdO particles than those of the Pd/γ-Al2O3 catalyst. Compared with the catalyst of 0.2Pd/γ-Al2O3 (percentage of mass, the same as below), the catalyst doped with 0.3CeO2 had a stronger reduction peak, which was shifted to the low-temperature zone by more than 80 °C. The results of XPS and O2-TPD showed that the introduction of CeO2 provided more surface oxygen vacancy for the catalyst and enhanced its catalytic oxidation ability, and the amount of desorbed O2 increased from 3.55 μmol/g to 8.54 μmol/g. The results of EPR were that the addition of CeO2 increased the content of active oxygen species and oxygen vacancies on the surface of the catalysts, which might be due to the supply of electrons to the O2 and PdO during the Ce3+toCe4+ conversion process. That could have accelerated the catalytic reaction process. Compared with the single precious metal catalyst, the T10 and T90 of the Pd-Ce/γ-Al2O3 catalyst were decreased by 22 °C and 40 °C, respectively.
Collapse
Affiliation(s)
- Sida Ren
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Wenjun Liang
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.
| | - Qinglei Li
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| | - Yuxue Zhu
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Abstract
In recent years, the impending necessity to improve the quality of outdoor and indoor air has produced a constant increase of investigations in the methodologies to remove and/or to decrease the emission of volatile organic compounds (VOCs). Among the various strategies for VOC elimination, catalytic oxidation and recently photocatalytic oxidation are regarded as some of the most promising technologies for VOC total oxidation from urban and industrial waste streams. This work is focused on bimetallic supported catalysts, investigating systematically the progress and developments in the design of these materials. In particular, we highlight their advantages compared to those of their monometallic counterparts in terms of catalytic performance and physicochemical properties (catalytic stability and reusability). The formation of a synergistic effect between the two metals is the key feature of these particular catalysts. This review examines the state-of-the-art of a peculiar sector (the bimetallic systems) belonging to a wide area (i.e., the several catalysts used for VOC removal) with the aim to contribute to further increase the knowledge of the catalytic materials for VOC removal, stressing the promising potential applications of the bimetallic catalysts in the air purification.
Collapse
|
8
|
Abstract
On a worldwide scale, concern for our environment has understandably gained high priority in many current political and social agendas [...]
Collapse
|