1
|
Wang X, Liu Y, Wang Z, Song J, Li X, Xu C, Xu Y, Zhang L, Bao W, Sun B, Wang L, Liu D. [Ce 3+-O V-Ce 4+] Located Surface-Distributed Sheet Cu-Zn-Ce Catalysts for Methanol Production by CO 2 Hydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15140-15149. [PMID: 38978384 DOI: 10.1021/acs.langmuir.4c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The metal-support interaction is crucial for the performance of Cu-based catalysts. However, the distinctive properties of the support metal element itself are often overlooked in catalyst design. In this paper, a sheet Cu-Zn-Ce with [Ce3+-OV-Ce4+] located on the surface was designed by the sol-gel method. Through EPR and X-ray photoelectron spectroscopy (XPS), the relationship between the content of oxygen vacancies and Ce was revealed. Ce itself induces the generation of [Ce3+-OV-Ce4+]. Through ICP-MS, XPS, and SEM-mapping, the Ce-induced formation of [Ce3+-OV-Ce4+] located on the catalyst surface was demonstrated. CO2-TPD and DFT calculations further revealed that [Ce3+-OV-Ce4+] enhanced CO2 adsorption, leading to a 10% increase in methanol selectivity compared to Cu-Zn-Ce synthesized via the coprecipitation method.
Collapse
Affiliation(s)
- Xuguang Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yaxin Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Wang
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Song
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Xue Li
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxiang Xu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Weizhong Bao
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Bin Sun
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Lei Wang
- Shanghai Waigaoqiao No. 3 Power Generation Co. Ltd, Shanghai 200137, China
| | - Dianhua Liu
- Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, School of Chemical Engineering, Carbon Neutral Joint Laboratory of East China University of Science and Technology-Shenergy Co., Ltd. East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Zeng A, Lu C, Xu B, Wang A, Liu YY, Sun Z, Wang Y. A highly active catalyst derived from CuO particles for selective hydrogenation of acetylene in large excess ethylene. Phys Chem Chem Phys 2023; 25:14598-14605. [PMID: 37191254 DOI: 10.1039/d3cp00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The removal of acetylene impurities is indispensable in the production of ethylene. An Ag-promoted Pd catalyst is industrially used to remove acetylene impurities by selective hydrogenation. It is highly desirable to replace Pd with non-precious metals. In the present investigation, CuO particles, which are most frequently used as the precursors for Cu-based catalysts, were prepared through the solution-based chemical precipitation method and used to prepare high-performance catalysts for selective hydrogenation of acetylene in large excess ethylene. The non-precious metal catalyst was prepared by treating CuO particles with acetylene-containing gas (0.5 vol% C2H2/Ar) at 120 °C and subsequent hydrogen reduction at 150 °C. The obtained catalyst was tested in selective hydrogenation of acetylene in a large excess of ethylene (0.72 vol% CH4 as the internal standard, 0.45 vol% C2H2, 88.83 vol% C2H4, 10.00 vol% H2). It exhibited significantly higher activity than the counterpart of Cu metals, achieving 100% conversion of acetylene without ethylene loss at 110 °C and atmospheric pressure. The characterization by means of XRD, XPS, TEM, H2-TPR, CO-FTIR, and EPR verified the formation of an interstitial copper carbide (CuxC), which was responsible for the enhanced hydrogenation activity.
Collapse
Affiliation(s)
- Aonan Zeng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Bo Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
3
|
Investigation of Cu-doped ceria through a combined spectroscopic approach: involvement of different catalytic sites in CO oxidation. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Impact of Hydrothermally Prepared Support on the Catalytic Properties of CuCe Oxide for Preferential CO Oxidation Reaction. Catalysts 2022. [DOI: 10.3390/catal12060674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CuCe mixed oxide is one of the most studied catalytic systems for preferential CO oxidation (CO-PrOx) for the purification of hydrogen-rich gas stream. In this study, a series of ceria supports were prepared via a citrates-hydrothermal route by altering the synthesis parameters (concentration and temperature). The resulting supports were used for the preparation of CuCe mixed-oxide catalysts via wet impregnation. Various physicochemical techniques were utilized for the characterization of the resulting materials, whereas the CuCe oxide catalysts were assessed in CO-PrOx reaction. Through the proper modification of the hydrothermal parameters, CeO2 supports with tunable properties can be formed, thus targeting the formation of highly active and selective catalysts. The nature of the reduced copper species and the optimum content in oxygen vacancies seems to be the key factors behind the remarkable catalytic performance of a CO-PrOx reaction.
Collapse
|
5
|
Opitz P, Jegel O, Nasir J, Rios-Studer T, Gazanis A, Pham DH, Domke K, Heermann R, Schmedt Auf der Günne J, Tremel W. Defect-controlled halogenating properties of lanthanide-doped ceria nanozymes. NANOSCALE 2022; 14:4740-4752. [PMID: 35266939 DOI: 10.1039/d2nr00501h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine organisms combat bacterial colonization by biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidase enzymes, whose activity can be emulated by nanoceria using milli- and micromolar concentrations of Br- and H2O2. We show that the haloperoxidase-like activity of nanoceria can greatly be enhanced by Ln substitution in Ce1-xLnxO2-x/2. Non-agglomerated nanosized Ce1-xLnxO2-x/2 (Ln = Pr, Tb, particle size < 10 nm) was prepared mechanochemically from CeCl3 and Na2CO3 followed by short calcination. Lanthanide metals could be incorporated into the CeO2 host without solubility limit, as shown for Tb. The distribution of the Ln3+ defect sites in the CeO2 host structure was analyzed by electron spin resonance spectroscopy. Ce3+ and superoxide O2- species are present at surface sites. Their formation is promoted by increasing dopant concentration. Ce1-xLnxO2-x/2 was prepared in copious amounts by ball-milling. This energy-saving and residue-free method can be upscaled to industrial scale. The surface defect chemistry of Ce1-xLnxO2-x/2 was unravelled by vibrational spectroscopy. It is associated with the mechanochemical preparation and leads to enhanced catalytic activity. Although Ce0.9Pr0.1O1.95 had a lower BET surface area than pure CeO2, its catalytic activity, calibrated by oxidative bromination of phenol red, was much higher because the ζ-potential increased from 15 mV (for CeO2) to 30 mV (for Ce0.9Pr0.1O1.95). This facilitates adsorption of Br- in aqueous conditions and explains the high catalytic activity of the Ln-substituted CeO2. Ce1-xLnxO2-x/2 is an effective and "green" nanoparticle haloperoxidase mimic for antifouling applications, as no chemicals other than the ubiquitous Br- and H2O2 (generated in daylight) are required, and only natural metabolites are released into the environment.
Collapse
Affiliation(s)
- Phil Opitz
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Olga Jegel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Jamal Nasir
- University of Siegen, Faculty IV: School of Science and Technology, Department of Chemistry and Biology, Adolf-Reichwein-Straße 2, D-57076 Siegen, Germany.
| | - Tobias Rios-Studer
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Athanasios Gazanis
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Biotechnologie, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Dang-Hieu Pham
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Katrin Domke
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany
| | - Ralf Heermann
- Johannes-Gutenberg-Universität Mainz, Institut für Molekulare Physiologie, Biozentrum II, Mikrobiologie und Biotechnologie, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany.
| | - Jörn Schmedt Auf der Günne
- University of Siegen, Faculty IV: School of Science and Technology, Department of Chemistry and Biology, Adolf-Reichwein-Straße 2, D-57076 Siegen, Germany.
| | - Wolfgang Tremel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
6
|
Papatheodorou G, Ntzoufra P, Hapeshi E, Vakros J, Mantzavinos D. Hybrid Biochar/Ceria Nanomaterials: Synthesis, Characterization and Activity Assessment for the Persulfate-Induced Degradation of Antibiotic Sulfamethoxazole. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:194. [PMID: 35055213 PMCID: PMC8778396 DOI: 10.3390/nano12020194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022]
Abstract
Biochar from spent malt rootlets was employed as the template to synthesize hybrid biochar-ceria materials through a wet impregnation method. The materials were tested for the activation of persulfate (SPS) and subsequent degradation of sulfamethoxazole (SMX), a representative antibiotic, in various matrices. Different calcination temperatures in the range 300-500 °C were employed and the resulting materials were characterized by means of N2 adsorption and potentiometric mass titration as well as TGA, XRD, SEM, FTIR, DRS, and Raman spectroscopy. Calcination temperature affects the biochar content and the physicochemical properties of the hybrid materials, which were tested for the degradation of 500 μg L-1 SMX with SPS (in the range 200-500 mg L-1) in various matrices including ultrapure water (UPW), bottled water, wastewater, and UPW spiked with bicarbonate, chloride, or humic acid. Materials calcined at 300-350 °C, with a surface area of ca. 120 m2 g-1, were the most active, yielding ca. 65% SMX degradation after 120 min of reaction in UPW; materials calcined at higher temperatures as well as bare biochar were less active. Degradation decreased with increasing matrix complexity due to the interactions amongst the surface, the contaminant, and the oxidant. Experiments in the presence of scavengers (i.e., methanol, t-butanol, and sodium azide) revealed that sulfate and hydroxyl radicals as well as singlet oxygen were the main oxidative species.
Collapse
Affiliation(s)
- Golfo Papatheodorou
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Paraskevi Ntzoufra
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Evroula Hapeshi
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 2417, Cyprus;
| | - John Vakros
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece; (G.P.); (P.N.)
| |
Collapse
|
7
|
Highly Dispersed Pd Species Supported on CeO2 Catalyst for Lean Methane Combustion: The Effect of the Occurrence State of Surface Pd Species on the Catalytic Activity. Catalysts 2021. [DOI: 10.3390/catal11070772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The correlation between the occurrence state of surface Pd species of Pd/CeO2 for lean CH4 combustion is investigated. Herein, by using a reduction-deposition method, we have synthesized a highly active 0.5% PdO/CeO2-RE catalyst, in which the Pd nanoparticles are evenly dispersed on the CeO2 nanorods CeO2-R. Based on comprehensive characterization, we have revealed that the uniformly dispersed Pd nanoparticles with a particle size distribution of 2.3 ± 0.6 nm are responsible for the generation of PdO and PdxCe1−xO2−δ phase with –Pd2+–O2−–Ce4+– linkage, which can easily provide oxygen vacancies and facilitate the transfer of reactive oxygen species between the CeO2-R and Pd species. As a consequence, the remarkable catalytic activity of 0.5% Pd/CeO2-RE is related to the high concentration of PdO species on the surface of the catalyst and the synergistic interaction between the Pd species and the CeO2 nanorod.
Collapse
|
8
|
Rood SC, Pastor‐Algaba O, Tosca‐Princep A, Pinho B, Isaacs M, Torrente‐Murciano L, Eslava S. Synergistic Effect of Simultaneous Doping of Ceria Nanorods with Cu and Cr on CO Oxidation and NO Reduction. Chemistry 2021; 27:2165-2174. [PMID: 33210814 PMCID: PMC7898804 DOI: 10.1002/chem.202004623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/27/2022]
Abstract
Ceria particles play a key role in catalytic applications such as automotive three-way catalytic systems in which toxic CO and NO are oxidized and reduced to safe CO2 and N2 , respectively. In this work, we explore the incorporation of Cu and Cr metals as dopants in the crystal structure of ceria nanorods prepared by a single-step hydrothermal synthesis. XRD, Raman and XPS confirm the incorporation of Cu and Cr in the ceria crystal lattices, offering ceria nanorods with a higher concentration of oxygen vacancies. XPS also confirms the presence of Cr and Cu surface species. H2 -TPR and XPS analysis show that the simultaneous Cu and Cr co-doping results in a catalyst with a higher surface Cu concentration and a much-enhanced surface reducibility, in comparison with either undoped or singly doped (Cu or Cr) ceria nanorods. While single Cu doping enhances catalytic CO oxidation and Cr doping improves catalytic NO reduction, co-doping with both Cu and Cr enhances the benefits of both dopants in a synergistic manner employing roughly a quarter of dopant weight.
Collapse
Affiliation(s)
- Shawn C. Rood
- Centre for Sustainable Chemical TechnologiesDepartment of Chemical EngineeringUniversity of BathClaverton DownBathBA2 7AYUK
| | - Oriol Pastor‐Algaba
- Departament d'Enginyeria Química, Biològica i AmbientalUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Albert Tosca‐Princep
- Departament d'Enginyeria Química, Biològica i AmbientalUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - Bruno Pinho
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Mark Isaacs
- Department of ChemistryUniversity College LondonLondonWC1H 0AJUK
| | - Laura Torrente‐Murciano
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Salvador Eslava
- Centre for Sustainable Chemical TechnologiesDepartment of Chemical EngineeringUniversity of BathClaverton DownBathBA2 7AYUK
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
9
|
Papadopoulos C, Kappis K, Papavasiliou J, Vakros J, Kuśmierz M, Gac W, Georgiou Y, Deligiannakis Y, Avgouropoulos G. Copper-promoted ceria catalysts for CO oxidation reaction. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liu X, Jia S, Yang M, Tang Y, Wen Y, Chu S, Wang J, Shan B, Chen R. Activation of subnanometric Pt on Cu-modified CeO 2 via redox-coupled atomic layer deposition for CO oxidation. Nat Commun 2020; 11:4240. [PMID: 32843647 PMCID: PMC7447628 DOI: 10.1038/s41467-020-18076-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Improving the low-temperature activity (below 100 °C) and noble-metal efficiency of automotive exhaust catalysts has been a continuous effort to eliminate cold-start emissions, yet great challenges remain. Here we report a strategy to activate the low-temperature performance of Pt catalysts on Cu-modified CeO2 supports based on redox-coupled atomic layer deposition. The interfacial reducibility and structure of composite catalysts have been precisely tuned by oxide doping and accurate control of Pt size. Cu-modified CeO2-supported Pt sub-nanoclusters demonstrate a remarkable performance with an onset of CO oxidation reactivity below room temperature, which is one order of magnitude more active than atomically-dispersed Pt catalysts. The Cu-O-Ce site with activated lattice oxygen anchors deposited Pt sub-nanoclusters, leading to a moderate CO adsorption strength at the interface that facilitates the low-temperature CO oxidation performance.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Ming Yang
- General Motors Global Research and Development, Chemical Sciences and Materials Systems Lab, 3500 Mound Road, Warren, Michigan, 48090, USA
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, 29634, USA
| | - Yuanting Tang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Yanwei Wen
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China
| | - Shengqi Chu
- Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, People's Republic of China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, 430072, Wuhan, Hubei, People's Republic of China
| | - Bin Shan
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China.
| | - Rong Chen
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts 2020. [DOI: 10.3390/catal10020160] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Catalysis is an indispensable part of our society, massively involved in numerous energy and environmental applications. Although, noble metals (NMs)-based catalysts are routinely employed in catalysis, their limited resources and high cost hinder the widespread practical application. In this regard, the development of NMs-free metal oxides (MOs) with improved catalytic activity, selectivity and durability is currently one of the main research pillars in the area of heterogeneous catalysis. The present review, involving our recent efforts in the field, aims to provide the latest advances—mainly in the last 10 years—on the rational design of MOs, i.e., the general optimization framework followed to fine-tune non-precious metal oxide sites and their surrounding environment by means of appropriate synthetic and promotional/modification routes, exemplified by CuOx/CeO2 binary system. The fine-tuning of size, shape and electronic/chemical state (e.g., through advanced synthetic routes, special pretreatment protocols, alkali promotion, chemical/structural modification by reduced graphene oxide (rGO)) can exert a profound influence not only to the reactivity of metal sites in its own right, but also to metal-support interfacial activity, offering highly active and stable materials for real-life energy and environmental applications. The main implications of size-, shape- and electronic/chemical-adjustment on the catalytic performance of CuOx/CeO2 binary system during some of the most relevant applications in heterogeneous catalysis, such as CO oxidation, N2O decomposition, preferential oxidation of CO (CO-PROX), water gas shift reaction (WGSR), and CO2 hydrogenation to value-added products, are thoroughly discussed. It is clearly revealed that the rational design and tailoring of NMs-free metal oxides can lead to extremely active composites, with comparable or even superior reactivity than that of NMs-based catalysts. The obtained conclusions could provide rationales and design principles towards the development of cost-effective, highly active NMs-free MOs, paving also the way for the decrease of noble metals content in NMs-based catalysts.
Collapse
|
12
|
Abstract
Important advances have been achieved over the past years in agriculture, industrial technology, energy, and health, which have contributed to human well-being [...]
Collapse
|
13
|
Yang G, Park SJ. Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. MATERIALS 2019; 12:ma12071177. [PMID: 30978917 PMCID: PMC6479615 DOI: 10.3390/ma12071177] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 01/20/2023]
Abstract
With the continuous development and progress of materials science, increasingly more attention has been paid to the new technology of powder synthesis and material preparation. The hydrothermal method is a promising liquid phase preparation technology that has developed rapidly during recent years. It is widely used in many fields, such as the piezoelectric, ferroelectric, ceramic powder, and oxide film fields. The hydrothermal method has resulted in many new methods during the long-term research process, such as adding other force fields to the hydrothermal condition reaction system. These force fields mainly include direct current, electric, magnetic (autoclaves composed of non-ferroelectric materials), and microwave fields. Among them, the microwave hydrothermal method, as an extension of the hydrothermal reaction, cleverly uses the microwave temperature to compensate for the lack of temperature in the hydrothermal method, allowing better practical application. This paper reviews the development of the hydrothermal and microwave hydrothermal methods, introduces their reaction mechanisms, and focuses on the practical application of the two methods.
Collapse
Affiliation(s)
- Guijun Yang
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Korea.
| |
Collapse
|