1
|
Cleary SR, Starace AK, Curran-Velasco CC, Ruddy DA, McGuirk CM. The Overlooked Potential of Sulfated Zirconia: Reexamining Solid Superacidity Toward the Controlled Depolymerization of Polyolefins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6612-6653. [PMID: 38509763 DOI: 10.1021/acs.langmuir.3c03966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Closed-loop recycling via an efficient chemical process can help alleviate the global plastic waste crisis. However, conventional depolymerization methods for polyolefins, which compose more than 50% of plastics, demand high temperatures and pressures, employ precious noble metals, and/or yield complex mixtures of products limited to single-use fuels or oils. Superacidic forms of sulfated zirconia (SZrO) with Hammet Acidity Functions (H0) ≤ - 12 (i.e., stronger than 100% H2SO4) are industrially deployed heterogeneous catalysts capable of activating hydrocarbons under mild conditions and are shown to decompose polyolefins at temperatures near 200 °C and ambient pressure. Additionally, confinement of active sites in porous supports is known to radically increase selectivity, coking and sintering resistance, and acid site activity, presenting a possible approach to low-energy polyolefin depolymerization. However, a critical examination of the literature on SZrO led us to a surprising conclusion: despite 40 years of catalytic study, engineering, and industrial use, the surface chemistry of SZrO is poorly understood. Ostensibly spurred by SZrO's impressive catalytic activity, the application-driven study of SZrO has resulted in deleterious ambiguity in requisite synthetic conditions for superacidity and insufficient characterization of acidity, porosity, and active site structure. This ambiguity has produced significant knowledge gaps surrounding the synthesis, structure, and mechanisms of hydrocarbon activation for optimized SZrO, stunting the potential of this catalyst in olefin cracking and other industrially relevant reactions, such as isomerization, esterification, and alkylation. Toward mitigating these long extant issues, we herein identify and highlight these current shortcomings and knowledge gaps, propose explicit guidelines for characterization of and reporting on characterization of solid acidity, and discuss the potential of pore-confined superacids in the efficient and selective depolymerization of polyolefins.
Collapse
Affiliation(s)
- Scott R Cleary
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Anne K Starace
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Caleb C Curran-Velasco
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Daniel A Ruddy
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - C Michael McGuirk
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Zuo Z, Sha Y, Wang P, Da Z. From bench to industry, the application of all-inorganic solid base materials in traditional heterogeneous catalysis: a mini review. RSC Adv 2024; 14:7468-7489. [PMID: 38440274 PMCID: PMC10910241 DOI: 10.1039/d4ra00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Acids and bases generally occur in pairs as concepts, and a large number of catalytic reactions can be considered as interactions between acids and bases. Many chemical reactions are a combination of acid-catalyzed processes and base-catalyzed processes, and thus it is particularly important to study and explain the mechanisms of acid-base synergy or acid-base interactions. However, compared to the in-depth research on acid catalysts, there is a lack of research on solid bases. In addition to the application of basic materials to non-petroleum processes, recent studies have also applied basic materials to the catalytic cracking reaction process of heavy oils, providing new ideas for the processing of heavy oils. The formation of carbanions with the contribution of basicity is a critical stage in many fine chemical reactions, as well as in the hydrocarbon cracking reactions promoted by a base. Thus, herein, we summarize the research progress on the main types of all-inorganic solid base catalysts, including the types of catalysts used in non-petroleum processes and petroleum processes, their preparation, the properties of their basic sites, and their structure-performance correlation in the reactions. Also, we provide an outlook on the future research directions of all-inorganic solid base materials.
Collapse
Affiliation(s)
- Zhixuan Zuo
- Sinopec Research Institute of Petroleum Processing CO.,Ltd No. 18 Xueyuan Road, Haidian District Beijing 100083 P.R. China +86-10-82368650
| | - Yuchen Sha
- Sinopec Research Institute of Petroleum Processing CO.,Ltd No. 18 Xueyuan Road, Haidian District Beijing 100083 P.R. China +86-10-82368650
| | - Peng Wang
- Sinopec Research Institute of Petroleum Processing CO.,Ltd No. 18 Xueyuan Road, Haidian District Beijing 100083 P.R. China +86-10-82368650
| | - Zhijian Da
- Sinopec Research Institute of Petroleum Processing CO.,Ltd No. 18 Xueyuan Road, Haidian District Beijing 100083 P.R. China +86-10-82368650
| |
Collapse
|
3
|
Verdoliva V, Saviano M, De Luca S. Correction: Verdoliva et al. Zeolites as Acid/Basic Solid Catalysts: Recent Synthetic Developments. Catalysts 2019, 9, 248. Catalysts 2023. [DOI: 10.3390/catal13040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
The authors wish to make the following correction to this paper [...]
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| |
Collapse
|
4
|
Wilson KA, Picinich LA, Siamaki AR. Nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes; versatile catalyst for Sonogashira cross-coupling reactions. RSC Adv 2023; 13:7818-7827. [PMID: 36909771 PMCID: PMC9996231 DOI: 10.1039/d3ra00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/26/2023] [Indexed: 03/14/2023] Open
Abstract
We have developed an efficient method to generate highly active nickel-palladium bimetallic nanoparticles supported on multi-walled carbon nanotubes (Ni-Pd/MWCNTs) by dry mixing of the nickel and palladium salts utilizing the mechanical energy of a ball-mill. These nanoparticles were successfully employed in Sonogashira cross-coupling reactions with a wide array of functionalized aryl halides and terminal alkynes under ligand and copper free conditions using a Monowave 50 heating reactor. Notably, the concentration of palladium can be lowered to a minimum amount of 0.81% and replaced by more abundant and less expensive nickel nanoparticles while effectively catalyzing the reaction. The remarkable reactivity of the Ni-Pd/MWCNTs catalyst toward Sonogashira cross-coupling reactions is attributed to the high degree of the dispersion of Ni-Pd nanoparticles with small particle size of 5-10 nm due to an efficient grinding method. The catalyst was easily removed from the reaction mixture by centrifugation and reused several times with minimal loss of catalytic activity. Furthermore, the concentration of catalyst in Sonogashira reactions can be reduced to a minimum amount of 0.01 mol% while still providing a high conversion of the Sonogashira product with a remarkable turnover number (TON) of 7200 and turnover frequency (TOF) of 21 600 h-1. The catalyst was fully characterized by a variety of spectroscopic techniques including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS).
Collapse
Affiliation(s)
- Katherine A Wilson
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Lacey A Picinich
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| | - Ali R Siamaki
- Department of Chemistry, Physics, and Materials Science, Fayetteville State University Fayetteville NC USA 28301
| |
Collapse
|
5
|
Li J, Gao M, Yan W, Yu J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem Sci 2023; 14:1935-1959. [PMID: 36845940 PMCID: PMC9945477 DOI: 10.1039/d2sc06010h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Zeolites are typically a class of crystalline microporous aluminosilicates that are constructed by SiO4 and AlO4 tetrahedra. Because of their unique porous structures, strong Brönsted acidity, molecular-level shape selectivity, exchangeable cations, and high thermal/hydrothermal stability, zeolites are widely used as catalysts, adsorbents, and ion-exchangers in industry. The activity, selectivity, and stability/durability of zeolites in applications are closely related to their Si/Al ratios and Al distributions in the framework. In this review, we discussed the basic principles and the state-of-the-art methodologies for regulating the Si/Al ratios and Al distributions of zeolites, including seed-assisted recipe modification, interzeolite transformation, fluoride media, and usage of organic structure-directing agents (OSDAs), etc. The conventional and newly developed characterization methods for determining the Si/Al ratios and Al distributions were summarized, which include X-ray fluorescence spectroscopy (XRF), solid state 29Si/27Al magic-angle-spinning nuclear magnetic resonance spectroscopy (29Si/27Al MAS NMR), Fourier-transform infrared spectroscopy (FT-IR), etc. The impact of Si/Al ratios and Al distributions on the catalysis, adsorption/separation, and ion-exchange performance of zeolites were subsequently demonstrated. Finally, we presented a perspective on the precise control of the Si/Al ratios and Al distributions of zeolites and the corresponding challenges.
Collapse
Affiliation(s)
- Jialiang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Mingkun Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China
- International Center of Future Science, Jilin University 2699 Qianjin Street Changchun 130012 China
| |
Collapse
|
6
|
Mishra RK, Chistie SM, Naika SU, Mohanty K. Catalytic pyrolysis of biomass over zeolites for bio-oil and chemical production: A review on their structure, porosity and acidity co-relation. BIORESOURCE TECHNOLOGY 2022; 366:128189. [PMID: 36309176 DOI: 10.1016/j.biortech.2022.128189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The oxygenated compounds found in bio-oil limit their application as a transportation fuel. Several studies were reported on eliminating the oxygenated components from bio-oil so as to improve its fuel properties. This work is dedicated to studying the shape selectivity, porosity, structure, acidity of zeolites and their effect in bio-oil and chemicals production. The unified pore size, specific structure, controlled Si/Al ratio, unique channels and circular entrances, mesoporosity, and acidity are the utmost discerning parameters for aromatics production and deoxygenation reaction. The conversion of biomass-derived oxygenates to aromatics using zeolite is subjected to the reactants entering the pore, conversion inside the pore, and diffusing out of the products from the zeolite pores. These approaches were considered for an in-depth understanding of zeolite properties, which will enhance the fundamental understanding of pyrolysis.
Collapse
Affiliation(s)
- Ranjeet Kumar Mishra
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Syeda Minnat Chistie
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Sneha Ullhas Naika
- Department of Chemical Engineering, Ramaiah Institute of Technology, Bangalore 560054, India
| | - Kaustubha Mohanty
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India.
| |
Collapse
|
7
|
Zeinali S, Fekri LZ, Nikpassand M, Varma RS. Greener Syntheses of Coumarin Derivatives Using Magnetic Nanocatalysts: Recent Advances. Top Curr Chem (Cham) 2022; 381:1. [PMID: 36370211 DOI: 10.1007/s41061-022-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
Coumarins (2H-1-benzopyran-2-ones) are an important group of biological heterocyclic compounds present in various parts of many plant species, encompassing an array of biological and pharmaceutical activities. In view of the importance of coumarins in heterocyclic chemistry and biological sciences and recent advances in the design of magnetic nanocatalysts, we present herein recent developments pertaining to their synthesis exclusively using magnetic nanoparticles, which can be retrieved easily and thus conform to the tenets of greener synthesis. The preparation of various types of coumarins such as Pechmann-based coumarins, bis coumarins, pyranocoumarins, and coumarin derivatives bearing amine moiety, linked to nicotinonitriles, N-coumarin-2-furanone, and pyrrole-linked chromene derivatives using nanocatalysts with a Fe3O4 core are described. This review covers the synthetic developments in the recent years 2012-2021 and focuses entirely on the synthesis of coumarins in the presence of magnetic nanocatalysts using greener approaches such as solvent-free conditions or deploying alternative activation methods, namely microwave or ultrasound irradiation.
Collapse
Affiliation(s)
- Shohreh Zeinali
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran
| | - Leila Zare Fekri
- Department of Chemistry, Payame Noor University, PO Box 19395-3697, Tehran, Iran.
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
8
|
Yasukawa T, Nakajima H, Masuda R, Yamashita Y, Kobayashi S. Effect of Activation Methods of Molecular Sieves on Ketimine Synthesis. J Org Chem 2022; 87:13750-13756. [PMID: 36173811 DOI: 10.1021/acs.joc.2c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although the use of molecular sieves for imine synthesis is a common protocol, there have been no comprehensive studies on heat-drying methods. This can be crucial for reproducibility. It was found that molecular sieve 5A dried at 160 °C for 5 h under vacuum efficiently promoted the condensation of various ketones and amines to afford even relatively bulky ketimines. Several control experiments and analyses revealed that only a small amount of Brønsted acid sites was important for the activity, rather than dehydration ability. Other types of molecular sieves could be utilized for the reaction after treatment with water followed by heat drying. A continuous-flow acetalization reaction of alcohols using the activated molecular sieve 5A was also demonstrated.
Collapse
Affiliation(s)
- Tomohiro Yasukawa
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hanako Nakajima
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryusuke Masuda
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Tang J, Yang Y, Qu J, Ban W, Song H, Gu Z, Yang Y, Cai L, Theivendran S, Wang Y, Zhang M, Yu C. Mesoporous sodium four-coordinate aluminosilicate nanoparticles modulate dendritic cell pyroptosis and activate innate and adaptive immunity. Chem Sci 2022; 13:8507-8517. [PMID: 35974763 PMCID: PMC9337734 DOI: 10.1039/d1sc05319a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is a programmed cell death widely studied in cancer cells for tumour inhibition, but rarely in dendritic cell (DC) activation for vaccine development. Here, we report the synthesis of sodium stabilized mesoporous aluminosilicate nanoparticles as DC pyroptosis modulators and antigen carriers. By surface modification of sodium-stabilized four-coordinate aluminium species on dendritic mesoporous silica nanoparticles, the resultant Na-IVAl-DMSN significantly activated DC through caspase-1 dependent pyroptosis via pH responsive intracellular ion exchange. The released proinflammatory cellular contents further mediated DC hyperactivation with prolonged cytokine release. In vivo studies showed that Na-IVAl-DMSN induced enhanced cellular immunity mediated by natural killer (NK) cells, cytotoxic T cells, and memory T cells as well as humoral immune response. Our results provide a new principle for the design of next-generation nanoadjuvants for vaccine applications.
Collapse
Affiliation(s)
- Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yang Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Jingjing Qu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Wenhuang Ban
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
11
|
Mesoporous titanium-aluminosilicate as an efficient catalyst for selective oxidation of cyclohexene at mild reaction conditions. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Indigenous Materials as Catalyst Supports for Renewable Diesel Production in Malaysia. ENERGIES 2022. [DOI: 10.3390/en15082835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
High energy demand from the market due to the rapid increment of the human population worldwide has urged society to explore alternatives to replace non-renewable energy. Renewable diesel produced from biomass could be the next potential energy source for its high stability, long-term storage, and comparable performance with diesel fuels. In producing renewable diesel, the application of catalyst is essential, and the catalyst support is synthesized with the catalyst to enhance the reaction rate and catalytic properties. In this review, the type of catalyst support will be reviewed along with a brief introduction to biodiesel and renewable diesel production, especially focusing on zeolites as the catalyst support. The enhancement of catalyst support will be critically discussed to improve the catalytic performance of support in renewable diesel production and important aspects such as the stability and recyclability of the supported catalyst are included. The application of the supported catalyst in increasing the selectivity and yield of renewable diesel is significant, in which the catalytic properties depend on the interaction between catalyst and catalyst support. The supported catalyst as a favorable substance to assist in enhancing renewable diesel yield could lead to a sustainable and greener future for the biofuel industry in Malaysia.
Collapse
|
13
|
Li T, Li T, Zhang Y, Schmidt RR, Peng P. Preparation of Tea Aroma Precursor Glycosides: An Efficient and Sustainable Approach via Chemical Glycosidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2320-2327. [PMID: 35138835 DOI: 10.1021/acs.jafc.1c07043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tea aroma precursor glycosides are plant-derived natural products with great economic value. However, the preparation of these glycosides remains largely overlooked in the past decades. Herein, we report a mild, efficient, and sustainable chemocatalytic procedure for the production of tea aroma precursor glycosides. During the study of the glycosidation, the catalysts were found to be decisive in the product formation favoring different reaction pathways; in addition, the influence of molecular sieves was elucidated. With regard to these findings, the serious problem of the competing orthoester formation side reaction was successfully overcome with low catalyst loading (1 mol %) and the use of 5 Å molecular sieves, leading to the preparation of a variety of tea aroma precursor β-d-glucopyranosides and β-primeverosides on a gram scale in high yields in an economical way. Taken together, the current approach features catalytic glycosidation with non-toxic and low-cost catalysts, demonstrates highly favorable greenness and sustainability, and promises industrial production of tea aroma precursor glycosides.
Collapse
Affiliation(s)
- Tianlu Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Jinan, Shandong 266237, People's Republic of China
| | - Tong Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Jinan, Shandong 266237, People's Republic of China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Jinan, Shandong 266237, People's Republic of China
| | - Richard R Schmidt
- Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Peng Peng
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, Jinan, Shandong 266237, People's Republic of China
| |
Collapse
|
14
|
Sun J, Norouzi O, Mašek O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. BIORESOURCE TECHNOLOGY 2022; 346:126258. [PMID: 34798254 DOI: 10.1016/j.biortech.2021.126258] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 05/18/2023]
Abstract
Algae, as a feedstock with minimum land footprint, is considered a promising biomass for sustainable fuels, chemicals, and materials. Unlike lignocellulosic biomass, algae consist mainly of lipids, carbohydrates, and proteins. This review focusses on the bio-oil and biochar co-products of algae-pyrolysis and presents the current state-of-the-art in the pyrolysis technologies and key applications of algal biochar. Algal biochar holds potential to be a cost-effective fertilizer, as it has high P, N and other nutrient contents. Beyond soil applications, algae-derived biochar has many other applications, such as wastewater-treatment, due to its porous structure and strong ion-exchange capacity. High specific capacitance and stability also make algal biochar a potential supercapacitor material. Furthermore, algal biochar can be great catalysts (or catalyst supports). This review sheds light on a wide range of algae-pyrolysis related topics, including advanced-pyrolysis techniques and the potential biochar applications in soil amendment, energy storage, catalysts, chemical industries, and wastewater-treatment plants.
Collapse
Affiliation(s)
- Jiacheng Sun
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Omid Norouzi
- Mechanical Engineering Program, School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
| |
Collapse
|
15
|
Recent Advances in the One-Pot Synthesis of Coumarin Derivatives from Different Starting Materials Using Nanoparticles: A Review. Top Catal 2022. [DOI: 10.1007/s11244-022-01571-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Gordina NE, Borisova TN, Klyagina KS, Astrakhantseva IA, Ilyin AA, Rumyantsev RN. Investigation of NH3 Desorption Kinetics on the LTA and SOD Zeolite Membranes. MEMBRANES 2022; 12:membranes12020147. [PMID: 35207069 PMCID: PMC8875342 DOI: 10.3390/membranes12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
Abstract
The acidity characteristics of zeolite are highly significant, and understanding the acidic properties is essential for developing new types of zeolite catalysts. Zeolite membranes were synthesized using metakaolin, sodium hydroxide, and alumina with a molar ratio of 6Al2Si2O7:12NaOH:2Al2O3 as the starting ingredients. X-ray diffraction, scanning electron microscopy, and infrared spectroscopy were used for this study. N2 adsorption measurements determined the surface areas of the SOD zeolite membrane (115 m2/g) and the LTA membrane (150 m2/g). The units of absorbed water vapor were 40 and 60 wt% for the SOD membrane and the LTA membrane, respectively. The strength and number of acid sites of the synthesized LTA and SOD zeolite membranes were determined by temperature-programmed desorption of ammonia. As a result, the value of the total acidity of the LTA zeolite membrane is in the range of 0.08 × 1019 units/m2 while that of the sodalite membrane is an order of magnitude lower and is 0.006 × 1019 units/m2. The apparent activation energy values for desorption of ammonia from LTA and SOD zeolite membranes were calculated using data on the kinetics of desorption of ammonia at different heating rates. It was found that at temperatures below 250 °C, the degree of conversion of the activation energy values is no more than 35 kJ/mol, which corresponds to the desorption of physically bound ammonia. An increase in the activation values up to 70 kJ/mol (for SOD) and up to 80 kJ/mol (for LTA) is associated with the desorption of chemically bound ammonia from the samples.
Collapse
|
17
|
Ahorsu R, Constanti M, Medina F. Recent Impacts of Heterogeneous Catalysis in Biorefineries. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Richard Ahorsu
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Magda Constanti
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Francesc Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| |
Collapse
|
18
|
Verdoliva V, Saviano M, De Luca S. Zeolites employed as basic catalyst for nucleophilic substitution reactions: An analysis of the adopted approach and hypothesized new perspectives. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Verdoliva V, Digilio G, Saviano M, De Luca S. Microwave Heating Promotes the S-Alkylation of Aziridine Catalyzed by Molecular Sieves: A Post-Synthetic Approach to Lanthionine-Containing Peptides. Molecules 2021; 26:molecules26206135. [PMID: 34684715 PMCID: PMC8538954 DOI: 10.3390/molecules26206135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aziridine derivatives involved in nucleophilic ring-opening reactions have attracted great interest, since they allow the preparation of biologically active molecules. A chemoselective and mild procedure to convert a peptide cysteine residue into lanthionine via S-alkylation on aziridine substrates is presented in this paper. The procedure relies on a post-synthetic protocol promoted by molecular sieves to prepare lanthionine-containing peptides and is assisted by microwave irradiation. In addition, it represents a valuable alternative to the stepwise approach, in which the lanthionine precursor is incorporated into peptides as a building block.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy;
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Universitaà del Piemonte Orientale “A. Avogadro”, 15121 Alessandria, Italy;
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy;
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy;
- Correspondence: ; Tel.: +39-081-253-4514
| |
Collapse
|
20
|
Yang Y, Zhang Y. An alternative route for the preparation of phenol: Decomposition of cyclohexylbenzene‐1‐hydroperoxide. INT J CHEM KINET 2021. [DOI: 10.1002/kin.21542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yufei Yang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
| | - Yadong Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou China
- Jiyuan Research Institute Zhengzhou University Jiyuan China
| |
Collapse
|
21
|
Hao F, Shang X, Liu Z, Zhang H, Lin JH, Xiao JC. Rh-catalyzed tunable defluorinative borylation. Chem Commun (Camb) 2021; 57:7124-7127. [PMID: 34179910 DOI: 10.1039/d1cc02079j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Described herein is a Rh-catalyzed tunable defluorinative borylation of allylic gem-difluorides to provide allylborylated monofluoroalkenes or homoallylborylated monofluoroalkenes with excellent Z/E selectivities. Completely different reaction paths were observed by slightly changing the reaction conditions. Allylborylated monofluoroalkenes were further converted into dihydroxyl-containing monofluoroalkenes.
Collapse
Affiliation(s)
- Fei Hao
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology-Shandong Academy of Science, Ji'nan 250353, China and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xueyun Shang
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology-Shandong Academy of Science, Ji'nan 250353, China
| | - Zhenwei Liu
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology-Shandong Academy of Science, Ji'nan 250353, China
| | - He Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, P. R. China.
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
22
|
Hisada T, Kitanosono T, Yamashita Y, Kobayashi S. Zeolite Catalysis Enables Efficient Pyrazinone Synthesis in Water. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoya Hisada
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Catalytic Transformation of Renewables (Olefin, Bio-Sourced, et al.). Catalysts 2021. [DOI: 10.3390/catal11030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objective of this Special Issue is to provide new diverse contributions that can demonstrate recent applications in biomass transformation using heterogeneous catalysts [...]
Collapse
|
24
|
Kornas A, Olszówka JE, Urbanova M, Brabec L, Rathousky J, Dedecek J, Pashkova V. Ultrasonic Pretreatment as a Tool for the Preparation of Low-Defect Zeolite Mordenite. ACS OMEGA 2021; 6:2340-2345. [PMID: 33521472 PMCID: PMC7841940 DOI: 10.1021/acsomega.0c05655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The effects of the ultrasonic (US) pretreatment of synthesis gel for the preparation of mordenite zeolite were studied in comparison with the classical stirring method. Even though the US pretreatment was performed before the hydrothermal crystallization, it significantly affected the properties of the obtained mordenite crystals. The US-assisted procedure resulted in a material with improved textural characteristics, in particular, the micropore volume accessible for nitrogen molecules in the as-made form. On the other hand, mordenite prepared with the classical stirring method demonstrated comparable sorption properties only after a postsynthetic treatment. Moreover, in the case of US-pretreated mordenite, altered crystal shape and more homogeneous morphology were observed. 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) demonstrated that the US pretreatment introduced structural changes on the atomic level, resulting in fewer defects (reflected in the number of silanol groups) and less pore blockage (affected by Na+ cations) for the as-made sample.
Collapse
|
25
|
Preparation and Characterization of the Sulfur-Impregnated Natural Zeolite Clinoptilolite for Hg(II) Removal from Aqueous Solutions. Processes (Basel) 2021. [DOI: 10.3390/pr9020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sulfur-impregnated zeolite has been obtained from the natural zeolite clinoptilolite by chemical modification with Na2S at 150 °C. The purpose of zeolite impregnation was to enhance the sorption of Hg(II) from aqueous solutions. Chemical analysis, acid and basic properties determined by Bohem’s method, chemical behavior at different pHo values, zeta potential, cation-exchange capacity (CEC), specific surface area, X-ray powder diffraction (XRPD), scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), as well as thermogravimetry with derivative thermogravimetry (TG-DTG) were used for detailed comparative mineralogical and physico-chemical characterization of natural and sulfur-impregnated zeolites. Results revealed that the surface of the natural zeolite was successfully impregnated with sulfur species in the form of FeS and CaS. Chemical modification caused an increase in basicity and the net negative surface charge due to an increase in oxygen-containing functional groups as well as a decrease in specific surface area and crystallinity due to the formation of sulfur-containing clusters at the zeolite surface. The sorption of Hg(II) species onto the sulfur-impregnated zeolite was affected by the pH, solid/liquid ratio, initial Hg(II) concentration, and contact time. The optimal sorption conditions were determined as pH 2, a solid/liquid ratio of 10 g/L, and a contact time of 800 min. The maximum obtained sorption capacity of the sulfur-impregnated zeolite toward Hg(II) was 1.02 mmol/g. The sorption mechanism of Hg(II) onto the sulfur-impregnated zeolite involves electrostatic attraction, ion exchange, and surface complexation, accompanied by co-precipitation of Hg(II) in the form of HgS. It was found that sulfur-impregnation enhanced the sorption of Hg(II) by 3.6 times compared to the natural zeolite. The leaching test indicated the retention of Hg(II) in the zeolite structure over a wide pH range, making this sulfur-impregnated sorbent a promising material for the remediation of a mercury-polluted environment.
Collapse
|
26
|
Olszowka JE, Pashkova V, Kornas A, Dedecek J, Brus J, Urbanova M, Tabor E, Klein P, Brabec L, Mlekodaj K. Influence of the ultrasonic-assisted synthesis on Al distribution in a MOR zeolite: from gel to resulting material. NEW J CHEM 2021. [DOI: 10.1039/d1nj00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Al-rich mordenite samples were prepared by the same synthesis procedure except for the activation of the gel for which classical stirring and ultrasonic pretreatment was used.
Collapse
Affiliation(s)
- Joanna E. Olszowka
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Veronika Pashkova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Agnieszka Kornas
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Dedecek
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Jiri Brus
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Martina Urbanova
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
- Institute of Macromolecular Chemistry of the CAS, v.v.i. Heyrovského nám. 1888, 162 00 Prague, Czech Republic
| | - Edyta Tabor
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Petr Klein
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Libor Brabec
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| | - Kinga Mlekodaj
- J. Heyrovský Institute of Physical Chemistry of the CAS, v.v.i. Dolejškova 2155/3, 182 23 Prague, Czech Republic
| |
Collapse
|
27
|
Senthilkumar S, Zhong W, Natarajan M, Lu C, Xu B, Liu X. A green approach for aerobic oxidation of benzylic alcohols catalysed by Cu I–Y zeolite/TEMPO in ethanol without additional additives. NEW J CHEM 2021. [DOI: 10.1039/d0nj03776a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CuI–Y zeolite catalysts, which are robust and recyclable, assisted by TEMPO catalyses quantitatively the aerobic oxidation of a wide range of benzylic alcohols into aldehydes in ethanol under mild conditions without additional additives.
Collapse
Affiliation(s)
| | - Wei Zhong
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Mookan Natarajan
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| | - Binyu Xu
- School of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- P. R. China
| |
Collapse
|
28
|
Verdoliva V, Digilio G, Saviano M, De Luca S. Thio-conjugation of substituted benzofurazans to peptides: molecular sieves catalyze nucleophilic attack on unsaturated fused rings. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02004d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient procedure to selectively introduce benzofurazan moieties into peptides was developed. It employs zeolite to catalyze the S-conjugation reaction.
Collapse
Affiliation(s)
- Valentina Verdoliva
- Institute of Biostructures and Bioimaging
- National Research Council
- 80134 Naples
- Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation
- Università del Piemonte Orientale “A. Avogadro”
- 15121 Alessandria
- Italy
| | - Michele Saviano
- Institute of Crystallography
- National Research Council
- 70126 Bari
- Italy
| | - Stefania De Luca
- Institute of Biostructures and Bioimaging
- National Research Council
- 80134 Naples
- Italy
| |
Collapse
|
29
|
Jambhulkar DK, Ugwekar RP, Bhanvase BA, Barai DP. A review on solid base heterogeneous catalysts: preparation, characterization and applications. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1864623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Diksha K. Jambhulkar
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Rajendra P. Ugwekar
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A. Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P. Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
30
|
Ghorbani‐Choghamarani A, Bastan H, Taherinia Z. New microsphere cobalt complex: preparation and catalytic consideration for the synthesis of some heterocyclic compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202003607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hosna Bastan
- Department of Chemistry Faculty of Science Ilam University, and P.O. Box 69315516 Ilam Iran
| | - Zahra Taherinia
- Department of Chemistry Faculty of Science Ilam University, and P.O. Box 69315516 Ilam Iran
| |
Collapse
|
31
|
Lee DJ, Lu JS, Chang JS. Pyrolysis synergy of municipal solid waste (MSW): A review. BIORESOURCE TECHNOLOGY 2020; 318:123912. [PMID: 32741699 DOI: 10.1016/j.biortech.2020.123912] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The synergistic pyrolysis of municipal solid waste (MSW) were recently explored. This review aims to provide an overview on the synergistic pyrolysis studies of MSW, focusing on the synergy occurred during co-pyrolysis of different constituents of MSW. The interactions of intermediates released during pyrolysis can shift end product distributions, accelerate pyrolysis rates, and preferred production of specific compounds, which were categorized into four basic types with discussions. The pyrolysis synergy is proposed to be the key for success of pyrolytic practice of MSW that can handle the waste with maximal resource recovery and minimal carbon emission.
Collapse
Affiliation(s)
- Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; College of Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Jia-Shun Lu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan
| |
Collapse
|
32
|
Bankura A, Naskar S, Roy Chowdhury S, Maity R, Mishra S, Das I. C
3
‐Thioester/‐Ester Substituted Linear Dienones: A Pluripotent Molecular Platform for Diversification via Cascade Pericyclic Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Abhijit Bankura
- Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| | - Sandip Naskar
- Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| | - Sabyasachi Roy Chowdhury
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721 302 India
| | - Rajib Maity
- Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| | - Sabyashachi Mishra
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur West Bengal 721 302 India
| | - Indrajit Das
- Organic and Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700 032 India
| |
Collapse
|
33
|
Falah S, Soleiman‐Beigi M, Kohzadi H. Potassium Natural Asphalt Sulfonate (K‐NAS): Synthesis and characterization as a new recyclable solid basic nanocatalyst and its application in the formation of carbon–carbon bonds. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saeid Falah
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| | - Mohammad Soleiman‐Beigi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| | - Homa Kohzadi
- Department of Chemistry, Faculty of Basic Sciences Ilam University P.O. Box 69315‐516 Ilam Iran
| |
Collapse
|
34
|
De Luca S, Digilio G, Verdoliva V, Tovillas P, Jiménez-Osés G, Peregrina JM. Lanthionine Peptides by S-Alkylation with Substituted Cyclic Sulfamidates Promoted by Activated Molecular Sieves: Effects of the Sulfamidate Structure on the Yield. J Org Chem 2019; 84:14957-14964. [PMID: 31625377 DOI: 10.1021/acs.joc.9b02306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A green and efficient method for preparing lanthionine peptides by a highly chemoselective and stereochemically controlled procedure is presented. It involves an S-alkylation reaction, promoted by activated molecular sieves, on chiral cyclic sulfamidates, both N-protected and unprotected. Of note, the reaction yield was high also for cyclic sulfamidates bearing a free amine group, while other strategies failed to achieve a ring-opening nucleophilic reaction with N-unprotected substrates. To prove the feasibility of the procedure, the synthesis of a thioether ring B mimetic of the natural lantibiotic haloduracin β was performed.
Collapse
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging , National Research Council , 80134 Naples , Italy
| | - Giuseppe Digilio
- Department of Science and Technologic Innovation Università del Piemonte Orientale "A. Avogadro" , 15121 Alessandria , Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging , National Research Council , 80134 Naples , Italy
| | - Pablo Tovillas
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain.,CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48170 Derio , Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| |
Collapse
|