1
|
Effect of sodium incorporation into Fe-Zn catalyst for Fischer- Tropsch synthesis to light olefins. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
2
|
Munir S, Amin M, Iqbal N, Iqbal A, Ghfar AA. Effect of Pyrolysis on iron-metal organic frameworks (MOFs) to Fe 3C @ Fe 5C 2 for diesel production in Fischer-Tropsch Synthesis. Front Chem 2023; 11:1150565. [PMID: 37113503 PMCID: PMC10126908 DOI: 10.3389/fchem.2023.1150565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
The Fischer-Tropsch Synthesis (FTS) is a significant catalytic chemical reaction that produces ultra-clean fuels or chemicals with added value from a syngas mixture of CO and H2 obtained from biomass, coal, or natural gas. The presence of sulfur is not considered good for producing liquid fuels for(FTS). In this study, we reveal that the presence of sulfur in ferric sulfate Fe2(SO4)3 MOF provides the high amount, 52.50% of light hydrocarbons in the carbon chain distribution. The calcined ferric nitrate Fe(NO₃)₃ MOF reveals the highest 93.27% diesel production. Calcination is regarded as an essential factor in enhancing liquid fuel production. Here, we probed the calcination effect of Metal Organic Framework (MOF) on downstream application syngas to liquid fuels. The XRD results of MOF. N and P. MOF.N shows the formation of the active phase of iron carbide (Fe5C2), considered the most active phase of FTS. The scanning electron microscopy (SEM) images of iron sulfate MOF catalyst (P.MOF.S) reveals that the existence of sulfur creates pores inside the particles due to the reaction of free water molecules with the sulfur derivate. The surface functional groups of prepared MOFs and tested MOFS were analyzed by Fourier transforms infrared spectroscopy (FT-IR). The thermal stability of prepared MOFS was analyzed by Thermo gravimetric analysis (TGA). The surface areas and structural properties of the catalysts were measured by N2-Physiosorption technique.
Collapse
Affiliation(s)
- Saleem Munir
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), Department of Energy Systems Engineering, National University of Sciences and Technology, Islamabad, Pakistan
- Departament d’Enginyeria Química (DEQ), Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Muhammad Amin
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), Department of Energy Systems Engineering, National University of Sciences and Technology, Islamabad, Pakistan
- Department of Energy Systems Engineering, Seoul National University, Seoul, South Korea
| | - Naseem Iqbal
- U.S.-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), Department of Energy Systems Engineering, National University of Sciences and Technology, Islamabad, Pakistan
- *Correspondence: Naseem Iqbal, ; Amjad Iqbal,
| | - Amjad Iqbal
- Department of Materials Technologies, Faculty of Materials Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Mechanical Engineering, CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Coimbra, Portugal
- *Correspondence: Naseem Iqbal, ; Amjad Iqbal,
| | - Ayman A. Ghfar
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
The Conversion of Waste Biomass into Carbon-Supported Iron Catalyst for Syngas to Clean Liquid Fuel Production. Catalysts 2022. [DOI: 10.3390/catal12101234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Syngas has been utilized in the production of chemicals and fuels, as well as in the creation of electricity. Feedstock impurities, such as nitrogen, sulfur, chlorine, and ash, in syngas have a negative impact on downstream processes. Fischer–Tropsch synthesis is a process that relies heavily on temperature to increase the production of liquid fuels (FTS). In this study, waste biomass converted into activated carbon and then a carbon-supported iron-based catalyst was prepared. The catalyst at 200 °C and 350 °C was used to investigate the influence of temperature on the subsequent application of syngas to liquid fuels. Potassium (K) was used as a structural promoter in the Fe-C catalyst to boost catalyst activity and structural stability (Fe-C-K). Low temperatures (200 °C) cause 60% and 80% of diesel generation, respectively, without and with potassium promoter. At high temperatures (350 °C), the amount of gasoline produced is 36% without potassium promoter, and 72% with promoter. Iron carbon-supported catalysts with potassium promoter increase gasoline conversion from 36.4% (Fe-C) to 72.5% (Fe-C-K), and diesel conversion from 60.8% (Fe-C) to 80.0% (Fe-C-K). As seen by SEM pictures, iron particles with potassium promoter were found to be equally distributed on the surface of activated carbon.
Collapse
|
4
|
Direct Construction of K-Fe3C@C Nanohybrids Utilizing Waste Biomass of Pomelo Peel as High-Performance Fischer–Tropsch Catalysts. Catalysts 2022. [DOI: 10.3390/catal12050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As the only renewable organic carbon source, abundant biomass has long been established and developed to mass-produce functionalized carbon materials. Herein, an extremely facile and green strategy was executed for the first time to in situ construct K-Fe3C@C nanohybrids directly by one-pot carbonizing the pomelo peel impregnated with Fe(NO3)3 solutions. The pyrolytically self-assembled nanohybrids were successfully applied in Fischer–Tropsch synthesis (FTS) and demonstrated high catalytic performance. Accordingly, the optimized K-Fe3C@C catalysts revealed excellent FTS activity (92.6% CO conversion) with highlighted C5+ hydrocarbon selectivity of 61.3% and light olefin (C2-4=) selectivity of 26.0% (olefin/paraffin (O/P) ratio of 6.2). Characterization results further manifest that the high performance was correlated with the in situ formation of the core-shell nanostructure consisting of Fe3C nanoparticles enwrapped by graphitized carbon shells and the intrinsic potassium promoter originated in pomelo peel during high-temperature carbonization. This work provided a facile approach for the low-cost mass-fabrication of high-performance FTS catalysts directly utilizing waste biomass without any chemical pre-treatment or purification.
Collapse
|
5
|
Zhao H, Guo L, Gao W, Chen F, Wu X, Wang K, He Y, Zhang P, Yang G, Tsubaki N. Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain Propagation for Boosting CO2 Hydrogenation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Poly(2,6-diphenyl-p-phenylene oxide) supported iron catalysts for the synthesis of lower olefins via Fischer–Tropsch reaction. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Preparation and Performances of ZIF-67-Derived FeCo Bimetallic Catalysts for CO2 Hydrogenation to Light Olefins. Catalysts 2020. [DOI: 10.3390/catal10040455] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A novel sodium-promoted Fe-Co/NC catalyst prepared by incipient-wet-impregnation method using ZIF-67 as a support was employed to convert CO2 to light olefins through hydrogenation reaction. Properties of the synthesized catalysts calcinated at various temperatures (from 400 to 700 °C) were investigated by XRD, SEM, TEM and Mӧssbauer spectroscopy. Characterization results showed that the support could be fully converted into carbon support above 500 °C, which could anchor metal particles, thus resulting in a uniform dispersion of active components. Furthermore, the Fe-Co alloy was formed during N2 calcination, and was converted into active components, such as Fe3O4, Fe5C2, and Co2C during the reaction. The reaction result indicated that FeCo/NC-600 catalyst exhibited the highest selectivity of light olefins (C2= − C4=, 27%) and CO2 conversion could reach around 37% when this catalyst pyrolyzed at 600 °C in N2. The highest selectivity for light olefins may be related to the combination of suitable particle size and sufficient active sites of iron carbide.
Collapse
|