1
|
Zhang T, Tang L, Chang B, Gao J, Li J, Lyu J. Enhancement of light-driven adsorption efficacy through the integration of NiCo 2O 4 onto CeO 2 for photo-ozone catalytic degradation of toluene. CHEMOSPHERE 2024; 363:142756. [PMID: 38964721 DOI: 10.1016/j.chemosphere.2024.142756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
In this study, a co-catalytic route was explored to enhance the photo-ozone catalytic degradation of volatile organic compounds (VOCs). NiCo2O4 was loaded onto the surface of CeO2 nanoparticles to create a composite catalyst (10%NiCo2O4/CeO2). The integration of NiCo2O4 onto CeO2 enhanced the interaction between the catalyst and toluene, a representative VOC, resulting in significantly increased toluene adsorption without a corresponding increase in specific surface area. This integration also improved the utilization of charge carriers and conversion of ozone to O2-. Under visible light irradiation, H2O accumulated charge carriers at 10%NiCo2O4/CeO2's surface, facilitating both ozone utilization and toluene adsorption. Another benefit of NiCo2O4 loading was its ability to enhance the conversion efficiency of solar energy. Consequently, the toluene removal and mineralization efficiencies of 10%NiCo2O4/CeO2 were enhanced by 182% and 309% compared to CeO2, and by 201% and 357% compared to NiCo2O4, respectively. Overall, this study demonstrated a novel co-catalyst design strategy for enhancing the photo-ozone catalytic degradation of VOCs.
Collapse
Affiliation(s)
- Ting Zhang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lingling Tang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Baolin Chang
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Junxian Gao
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ji Li
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, Jiangsu, 215009, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jinze Lyu
- School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
2
|
Li Y, Sun P, Liu T, Cheng L, Chen R, Bi X, Dong X. Efficient Photothermal Conversion for Oxidation Removal of Formaldehyde using an rGO-CeO2 Modified Nickel Foam Monolithic Catalyst. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Egorysheva AV, Ellert OG, Liberman EY, Golodukhina SV, Arapova OV, Chistyakova PA, Naumkin AV. Catalytic Oxidation of Methane over PdO/LnFe0.5Sb1.5O6 (Ln = La, Ce, Pr, Nd, Sm) Catalysts. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Zhao F, Wang D, Li X, Yin Y, Wang C, Qiu L, Yu J, Chang H. Enhancement of Cs on Co 3O 4 for N 2O Catalytic Decomposition: N 2O Activation and O 2 Desorption. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Feilin Zhao
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Dongdong Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Xing Li
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yimeng Yin
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Chizhong Wang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lei Qiu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Jie Yu
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Huazhen Chang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
5
|
Gao F, Xu X, Yang J. Removal of p-nitrophenol from simulated sewage using MgCo-3D hydrotalcite nanospheres: capability and mechanism. RSC Adv 2022; 12:27044-27054. [PMID: 36320857 PMCID: PMC9494026 DOI: 10.1039/d2ra01883g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/12/2022] [Indexed: 08/15/2023] Open
Abstract
4-Nitrophenol (4-NP) is an organic pollutant found in the wastewater discharged from coking and petrochemical industries, and it is highly toxic, persistent, and bioaccumulative. 4-NP is difficult to degrade and causes serious damage to human health and the ecological environment. In this study, MgCo-3D hydrotalcite nanospheres were synthesized via the hot solvent method using ZIF-67 as a template for 4-NP removal from wastewater. The composition and structure of MgCo-3D hydrotalcite nanospheres were characterized via X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission Electron Microscope (TEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Energy Dispersive Spectroscopy (EDS), and BET analyses. The maximum adsorption capacity was 131.59 mg g-1 under the optimized conditions (pH = 7, t = 298 K, C 0 = 50 mg L-1, dose = 0.4 g L-1). The adsorption obeyed the Langmuir, Redlich-Peterson and Sips models and pseudo-second-order kinetics, and the adsorption activation energy was 29.4 kJ mol-1, indicating a monolayer physical adsorption phenomenon. The adsorption of 4-NP on the MgCo-3D hydrotalcite nanospheres mainly involved hydrogen bonding and electrostatic interactions. The nanospheres were regenerated using the hot-air purging method. After five adsorption-desorption cycles, the adsorption capacity reached 107.6 mg g-1, indicating the good regeneration performance of the MgCo-3D hydrotalcite nanospheres.
Collapse
Affiliation(s)
- Fei Gao
- East China University of Science and Technology School of Chemical Engineering China
| | - Xinru Xu
- East China University of Science and Technology School of Chemical Engineering China
| | - Jingyi Yang
- East China University of Science and Technology School of Chemical Engineering China
| |
Collapse
|
6
|
Preparation and application of Co3O4 catalysts from ZIF-67 membranes over paper-like stainless steel fibers in isopropanol combustion. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Editorial Catalysts: Catalysis for the Removal of Gas-Phase Pollutants. Catalysts 2022. [DOI: 10.3390/catal12030280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Air pollution is one of the greatest concerns affecting the world today [...]
Collapse
|
8
|
Wang HY, Sun XB, Yang SH, Zhao PY, Zhang XJ, Wang GS, Huang Y. 3D Ultralight Hollow NiCo Compound@MXene Composites for Tunable and High-Efficient Microwave Absorption. NANO-MICRO LETTERS 2021; 13:206. [PMID: 34633551 PMCID: PMC8505608 DOI: 10.1007/s40820-021-00727-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 05/17/2023]
Abstract
The 3D hollow hierarchical architectures tend to be designed for inhibiting stack of MXene flakes to obtain satisfactory lightweight, high-efficient and broadband absorbers. Herein, the hollow NiCo compound@MXene networks were prepared by etching the ZIF 67 template and subsequently anchoring the Ti3C2Tx nanosheets through electrostatic self-assembly. The electromagnetic parameters and microwave absorption property can be distinctly or slightly regulated by adjusting the filler loading and decoration of Ti3C2Tx nanoflakes. Based on the synergistic effects of multi-components and special well-constructed structure, NiCo layered double hydroxides@Ti3C2Tx (LDHT-9) absorber remarkably achieves unexpected effective absorption bandwidth (EAB) of 6.72 GHz with a thickness of 2.10 mm, covering the entire Ku-band. After calcination, transition metal oxide@Ti3C2Tx (TMOT-21) absorber near the percolation threshold possesses minimum reflection loss (RLmin) value of - 67.22 dB at 1.70 mm within a filler loading of only 5 wt%. This work enlightens a simple strategy for constructing MXene-based composites to achieve high-efficient microwave absorbents with lightweight and tunable EAB.
Collapse
Affiliation(s)
- Hui-Ya Wang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Xiao-Bo Sun
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Shu-Hao Yang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Pei-Yan Zhao
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Xiao-Juan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Yi Huang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| |
Collapse
|
9
|
Jang HJ, Park SJ, Yang JH, Hong SM, Rhee CK, Sohn Y. Photocatalytic and Electrocatalytic Properties of Cu-Loaded ZIF-67-Derivatized Bean Sprout-Like Co-TiO 2/Ti Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1904. [PMID: 34443738 PMCID: PMC8399894 DOI: 10.3390/nano11081904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
ZIF-derivatized catalysts have shown high potential in catalysis. Herein, bean sprout-like Co-TiO2/Ti nanostructures were first synthesized by thermal treatment at 800 °C under Ar-flow conditions using sacrificial ZIF-67 templated on Ti sheets. It was observed that ZIF-67 on Ti sheets started to thermally decompose at around 350 °C and was converted to the cubic phase Co3O4. The head of the bean sprout structure was observed to be Co3O4, while the stem showed a crystal structure of rutile TiO2 grown from the metallic Ti support. Cu sputter-deposited Co-TiO2/Ti nanostructures were also prepared for photocatalytic and electrocatalytic CO2 reduction performances, as well as electrochemical oxygen reaction (OER). Gas chromatography results after photocatalytic CO2 reduction showed that CH3OH, CO and CH4 were produced as major products with the highest MeOH selectivity of 64% and minor C2 compounds of C2H2, C2H4 and C2H6. For electrocatalytic CO2 reduction, CO, CH4 and C2H4 were meaningfully detected, but H2 was dominantly produced. The amounts were observed to be dependent on the Cu deposition amount. Electrochemical OER performances in 0.1 M KOH electrolyte exhibited onset overpotentials of 330-430 mV (vs. RHE) and Tafel slopes of 117-134 mV/dec that were dependent on Cu-loading thickness. The present unique results provide useful information for synthesis of bean sprout-like Co-TiO2/Ti hybrid nanostructures and their applications to CO2 reduction and electrochemical water splitting in energy and environmental fields.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - So Jeong Park
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
| | - Ju Hyun Yang
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Sung-Min Hong
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Choong Kyun Rhee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
| | - Youngku Sohn
- Department of Chemistry, Chungnam National University, Daejeon 34134, Korea; (H.J.J.); (S.J.P.); (J.H.Y.); (S.-M.H.); (C.K.R.)
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
10
|
Lee SB, Ko EH, Park JY, Oh JM. Mixed Metal Oxide by Calcination of Layered Double Hydroxide: Parameters Affecting Specific Surface Area. NANOMATERIALS 2021; 11:nano11051153. [PMID: 33925092 PMCID: PMC8145563 DOI: 10.3390/nano11051153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Mixed metal oxide (MMO) is one of the widely utilized ceramic materials in various industries. In order to obtain high performance, the specific surface area of MMO should be controlled. Calcination of layered double hydroxide (LDH) is a versatile way to prepare MMO with homogeneous metal distribution and well-developed porosity. Although researchers found that the specific surface area of LDH-originated MMO was relatively high, it had not been systematically investigated how the surface area is controlled under a certain parameter. In this review, we summarized LDH-originated MMO with various starting composition, calcination temperature, and pore developing agent in terms of specific surface area and porosity. Briefly, it was represented that MMOs with Mg-Al components generally had higher specific surface area than Mg-Fe or Zn-Al components. Calcination temperature in the range 300–600 °C resulted in the high specific surface area, while upper or lower temperature reduced the values. Pore developing agent did not result in dramatic increase in MMO; however, the pore size distribution became narrower in the presence of pore developing agents.
Collapse
Affiliation(s)
- Su-Bin Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (S.-B.L.); (E.-H.K.)
| | - Eun-Hye Ko
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (S.-B.L.); (E.-H.K.)
| | - Joo Y. Park
- Discipline of Information Technology, Media and Communication, Murdoch University, Western Australia 6150, Australia
- Correspondence: (J.Y.P.); (J.-M.O.); Tel.: +61-8-9360-6257 (J.Y.P.); +82-2-2260-4977 (J.-M.O.)
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea; (S.-B.L.); (E.-H.K.)
- Correspondence: (J.Y.P.); (J.-M.O.); Tel.: +61-8-9360-6257 (J.Y.P.); +82-2-2260-4977 (J.-M.O.)
| |
Collapse
|
11
|
Wu X, Han R, Liu Q, Su Y, Lu S, Yang L, Song C, Ji N, Ma D, Lu X. A review of confined-structure catalysts in the catalytic oxidation of VOCs: synthesis, characterization, and applications. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00478f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This picture depicts the process of the catalytic oxidation of VOCs on confined-structure catalysts, which possess excellent activity and can effectively protect the active phase from aggregation and poisoning.
Collapse
|
12
|
In-situ electro-deposition synthesis of MnOx-NiCo2O4 monolithic catalyst with rich phase interfaces. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wu G, Chen B, Bai Z, Zhao Q, Wang Z, Song C, Guo X, Shi C. Cobalt oxide with flake-like morphology as efficient passive NOx adsorber. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Beheshti Askari A, Al Samarai M, Hiraoka N, Ishii H, Tillmann L, Muhler M, DeBeer S. In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based bimetallic dry methane reforming catalysts. NANOSCALE 2020; 12:15185-15192. [PMID: 32657291 DOI: 10.1039/d0nr01960g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The promoting effect of cobalt on the catalytic activity of a NiCoO Dry Methane Reforming (DMR) catalyst was studied by a combination of in situ Kβ X-ray Emission Spectroscopy (XES) and Kβ-detected High Energy Resolution Fluorescence Detected X-ray absorption spectroscopy (HERFD XAS). Following the calcination process, Ni XES and Kβ-detected HERFD XAS data revealed that the NiO coordination in the NiCoO catalyst has a higher degree of symmetry and is different than that of pure NiO/γ-Al2O3. Following the reductive activation, it was found that the NiCoO/γ-Al2O3 catalyst required a relatively higher temperature compared to the monometallic NiO/γ-Al2O3 catalyst. This finding suggests that Co is hampering the reduction of Ni in the NiCoO catalyst by modulation of its electronic structure. It has also been previously shown that the addition of Co enhances the DMR activity. Further, the Kβ XES spectrum of the partly reduced catalysts at 450 °C reveals that the Ni sites in the NiCoO catalyst are electronically different from the NiO catalyst. The in situ X-ray spectroscopic study demonstrates that reduced metallic Co and Ni are the primary species present after reduction and are preserved under DMR conditions. However, the NiCo catalyst appears to always be somewhat more oxidized than the Ni-only species, suggesting that the presence of cobalt modulates the Ni electronic structure. The electronic structural modulations resulting from the presence of Co may be the key to the increased activity of the NiCo catalyst relative to the Ni-only catalyst. This study emphasizes the potential of in situ X-ray spectroscopy experiments for probing the electronic structure of catalytic materials during activation and under operating conditions.
Collapse
Affiliation(s)
- Abbas Beheshti Askari
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sreenavya A, Sahu A, Sakthivel A. Hydrogenation of Lignin-Derived Phenolic Compound Eugenol over Ruthenium-Containing Nickel Hydrotalcite-Type Materials. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01106] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Awadakkam Sreenavya
- Inorganic Materials & Heterogeneous Catalysis Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, MP 470002, India
| | - Ayyamperumal Sakthivel
- Inorganic Materials & Heterogeneous Catalysis Laboratory, Department of Chemistry, School of Physical Sciences, Central University of Kerala, Kasaragod, Kerala 671320, India
| |
Collapse
|
16
|
Beheshti Askari A, al Samarai M, Morana B, Tillmann L, Pfänder N, Wandzilak A, Watts B, Belkhou R, Muhler M, DeBeer S. In Situ X-ray Microscopy Reveals Particle Dynamics in a NiCo Dry Methane Reforming Catalyst under Operating Conditions. ACS Catal 2020; 10:6223-6230. [PMID: 32551182 PMCID: PMC7295368 DOI: 10.1021/acscatal.9b05517] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Indexed: 02/03/2023]
Abstract
![]()
Herein,
we report the synthesis of a γ-Al2O3-supported
NiCo catalyst for dry methane reforming (DMR) and
study the catalyst using in situ scanning transmission X-ray microscopy
(STXM) during the reduction (activation step) and under reaction conditions.
During the reduction process, the NiCo alloy particles undergo elemental
segregation with Co migrating toward the center of the catalyst particles
and Ni migrating to the outer surfaces. Under DMR conditions, the
segregated structure is maintained, thus hinting at the importance
of this structure to optimal catalytic functions. Finally, the formation
of Ni-rich branches on the surface of the particles is observed during
DMR, suggesting that the loss of Ni from the outer shell may play
a role in the reduced stability and hence catalyst deactivation. These
findings provide insights into the morphological and electronic structural
changes that occur in a NiCo-based catalyst during DMR. Further, this
study emphasizes the need to study catalysts under operating conditions
in order to elucidate material dynamics during the reaction.
Collapse
Affiliation(s)
- Abbas Beheshti Askari
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Mustafa al Samarai
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Bruno Morana
- NanoInsight, Feldmannweg 17, 2628 CT Delft, The Netherlands
| | - Lukas Tillmann
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Norbert Pfänder
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | - Aleksandra Wandzilak
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| | | | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme
des Merisiers, Saint-Aubin − BP 48, Gif-sur-Yvette Cedex F-91192, France
| | - Martin Muhler
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, Bochum D-44801, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr D-45470, Germany
| |
Collapse
|
17
|
Li S, Wang D, Wu X, Chen Y. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Wang D, Cuo Z, Li S, Zhang M, Chen Y. In situ anchored NiCo 2O 4 on a nickel foam as a monolithic catalyst by electro-deposition for improved benzene combustion performance. CrystEngComm 2020. [DOI: 10.1039/d0ce00095g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monolithic catalysts designed by in situ electrodeposition possess a strong anchoring force and rich defects.
Collapse
Affiliation(s)
- Dongdong Wang
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Zhaxi Cuo
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Shuangde Li
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- China
| | - Min Zhang
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| | - Yunfa Chen
- State Key Laboratory of Multi-phase Complex Systems
- Institute of Process Engineering, Chinese Academy of Sciences
- Beijing 100190
- China
- University of Chinese Academy of Sciences
| |
Collapse
|