1
|
Ramli A, Khairul Anuar NASI, Yunus NM, Mohamed AR. Synthesis of vanillin via oxidation of kenaf stalks in the presence of CeO 2: tuning the catalytic behaviour of CeO 2 via nanostructure morphology. RSC Adv 2024; 14:36327-36339. [PMID: 39539535 PMCID: PMC11558518 DOI: 10.1039/d4ra05833j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Different CeO2 nanostructures were synthesized using a hydrothermal method and treated with alkaline NaOH, followed by drying at 120 °C for 16 h and calcined at 400 °C for the direct oxidation of kenaf stalks to vanillin under microwave irradiation. The catalysts were characterized for their physicochemical properties using XRD, BET, Raman spectroscopy, TPR, TPO, and XPS. All synthesized CeO2 nanostructures show diffraction peaks corresponding to the formation of cubic fluorite, which agrees with Raman spectra of the F2g mode. The N2 adsorption-desorption isotherms showed that all catalysts possess a type IV isotherm, indicating a mesoporous structure. TPR and TPO analyses display formation peaks corresponding to surface-to-bulk reducibility and the oxidized oxygen ratio, which is responsible for the redox properties of ceria nanostructures. The XPS analysis of CeO2 nanostructures proved that Ce exists in the Ce3+ and Ce4+ oxidation states. All catalysts were tested for direct oxidation of kenaf stalks under microwave irradiation with the highest vanillin yield obtained by the CeO2-Nps-400 heterogeneous catalyst at 3.84%, whereas 4.66% vanillin was produced using 2 N NaOH as a homogeneous catalyst.
Collapse
Affiliation(s)
- Anita Ramli
- HICoE Centre of Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy & Resources (ISER), Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Nur Akila Syakida Idayu Khairul Anuar
- HICoE Centre of Biofuel and Biochemical Research (CBBR), Institute of Sustainable Energy & Resources (ISER), Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Normawati Mohamad Yunus
- Centre of Research in Ionic Liquids (CORIL), Institute of Sustainable Energy & Resources (ISER), Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS Seri Iskandar 32610 Perak Malaysia
| | - Alina Rahayu Mohamed
- Faculty of Chemical Engineering & Technology, UniMAP Complex of Academics Jejawi 3, Jejawi, Arau 02600 Perlis Malaysia
| |
Collapse
|
2
|
Bu Y, Kim BS. Green production of functionalized few-layer borophene decorated with cerium-doped iron oxide nanoparticles for repeatable hydrogen peroxide detection. Biosens Bioelectron 2024; 260:116448. [PMID: 38820720 DOI: 10.1016/j.bios.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Functionalized few-layer borophene (FFB) was prepared using gallnut extract and coffee waste extract as natural exfoliating and stabilizing agents in an environmentally friendly ultrasonic and high shear exfoliation. Here, a facile precipitation method was employed to grow iron oxide nanoparticles doped with cerium (Ce-FeONPs) onto the surface of FFB. This intriguing combination of materials yielded Ce-FeONPs nanoparticles that exhibited exceptional peroxidase-like activity, efficiently catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2). Additionally, the introduction of FFB contributes a reducibility effect to the catalytic oxidation of TMB, facilitating the restoration of the oxTMB to TMB. Thus, FFB-Ce-FeONPs showcase intriguing properties encompassing both oxidative and reductive characteristics, suggesting their potential as a reagent for repeated detection of H2O2. Moreover, a colorimetric sensing system enabled the liner detection of H2O2 spanning a concentration range from 0.08 to 1 mM, with a detection limit of 0.03 mM. Noteworthily, FFB-Ce-FeONPs demonstrated sustained efficacy over ten successive recycling cycles, as indicated by consistent slopes and observable color changes. In summary, this work reports the first application of nanoenzymes in repetitive H2O2 detection. Even after ten multiple cycles, the detection limit remains virtually unaltered, underscoring the robustness and enduring effectiveness of the engineered nanomaterial. The proposed simultaneous oxidation and reduction strategies for detecting H2O2 showed a commendable capability in ten cycles of H2O2 detection, thus providing a promising approach in the field of H2O2 detection.
Collapse
Affiliation(s)
- Yingjie Bu
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
3
|
Piliai L, Castro-Latorre P, Pchálek F, Oveysipoor S, Kosto Y, Khalakhan I, Skála T, Neyman KM, Alemany P, Vorochta M, Bruix A, Matvija P, Matolínová I. Electronic and Structural Properties of Thin Iron Oxide Films on CeO 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46858-46871. [PMID: 39167683 PMCID: PMC11378155 DOI: 10.1021/acsami.4c05542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modification of CeO2 (ceria) with 3d transition metals, particularly iron, has been proven to significantly enhance its catalytic efficiency in oxidation or combustion reactions. Although this phenomenon is widely reported, the nature of the iron-ceria interaction responsible for this improvement remains debated. To address this issue, we prepared well-defined model FeOx/CeO2(111) catalytic systems and studied their structure and interfacial electronic properties using photoelectron spectroscopy, scanning tunneling microscopy, and low-energy electron diffraction, coupled with density functional theory (DFT) calculations. Our results show that under ultrahigh vacuum conditions, Fe deposition leads to the formation of small FeOx clusters on the ceria surface. Subsequent annealing results in the growth of large amorphous FeOx particles and a 2D FeOx layer. Annealing in an oxygen-rich atmosphere further oxidizes iron up to the Fe3+ state and improves the crystallinity of both the 2D layer and the 3D particles. Our DFT calculations indicate that the 2D FeOx layer interacts strongly with the ceria surface, exhibiting structural corrugations and transferred electrons between Fe2+/Fe3+ and Ce4+/Ce3+ redox pairs. The novel 2D FeOx/CeO2(111) phase may explain the enhancement of the catalytic properties of CeO2 by iron. Moreover, the corrugated 2D FeOx layer can serve as a template for the ordered nucleation of other catalytically active metals, in which the redox properties of the 2D FeOx/CeO2(111) system are exploited to modulate the charge of the supported metals.
Collapse
Affiliation(s)
- Lesia Piliai
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Pablo Castro-Latorre
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - František Pchálek
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Shiva Oveysipoor
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Yuliia Kosto
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
- Applied Physics and Semiconductor Spectroscopy, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Zuse-Strasse 1, Cottbus 03046, Germany
| | - Ivan Khalakhan
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Tomáš Skála
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Konstantin M Neyman
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona 08010, Spain
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Michael Vorochta
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Albert Bruix
- Departament de Ciència de Materials i Química Física and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Peter Matvija
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| | - Iva Matolínová
- Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 8 180 00, Czech Republic
| |
Collapse
|
4
|
Borges Serra AR, Castro de Sousa G, de Carvalho Gomes V, Alves de Sousa Filho I, Grisolia CK, Zhao B, Walton RI, Serra OA. Enhancing photocatalytic tetracycline degradation through the fabrication of high surface area CeO 2 from a cerium-organic framework. RSC Adv 2024; 14:17507-17518. [PMID: 38818361 PMCID: PMC11138135 DOI: 10.1039/d4ra02640c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Water pollution is a global environmental issue, and the presence of pharmaceutical compounds, such as tetracyclines (TCs), in aquatic ecosystems has raised growing concerns due to the potential risks to both the environment and human health. A high surface area CeO2 was prepared via atmospheric thermal treatment of a metal-organic framework of cerium and benzene-1,3,5-tricarboxylate. The effects of calcination temperature on the morphology, structure, light absorption properties and tetracycline removal efficiency were studied. The best activity of the photocatalysts could be achieved when the heat treatment temperature is 300 °C, which enhances the photocatalytic degradation performance towards tetracycline under visible light. The resulting CeO2 particles have high capacity for adsorbing TCs from aqueous solution: 90 mg g-1 for 60 mg L-1 TCs. As a result, 98% of the initial TC can be removed under simulated sunlight irradiation. The cooperation of moderate defect concentration and disordered structure showed tetracycline removal activity about 10 times higher than the initial Ce-MOF. An embryotoxicity assessment on zebrafish revealed that treatment with CeO2 particles significantly decreased the toxicity of TC solutions.
Collapse
Affiliation(s)
- Ayla Roberta Borges Serra
- Department of Chemistry and Chemical Engineering, University Federal of São Carlos São Carlos Brazil
| | | | | | | | - Cesar Koppe Grisolia
- Department of Genetics and Morphology, Institute of Biological Sciences, University Brasilia-UnB Brasilia Brazil
| | - Baiwen Zhao
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
5
|
Ramli A, Khairul Anuar NASI, Bakhtiar NAA, Mohamad Yunus N, Mohamed AR. Direct Oxidation of Hibiscus cannabinus Stalks to Vanillin Using CeO 2 Nanostructure Catalysts. Molecules 2023; 28:4963. [PMID: 37446622 PMCID: PMC10343839 DOI: 10.3390/molecules28134963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Biomass lignin can be used to produce vanillin through an oxidation process. Although its purity is high, the processing time and separation efficiency are not ideal. This research aims to produce vanillin directly from Kenaf stalks without separating the lignin first from the lignocellulosic biomass. This method is greener because it does not require the separation of cellulose and hemicellulose from the biomass, thus minimizing the use of acid and alkaline solutions and saving time. A high oxygen storage capacity and release capacity of ceria as an oxidation catalyst contribute to the reversable redox properties between Ce4+ and Ce3+ in ceria lattice. Cerium oxide nanostructures were synthesized using a hydrothermal method treated under alkaline NaOH, followed by drying at 120 °C for 16 h and calcining at different temperatures between 400 and 600 °C for the direct oxidation of Kenaf stalks to vanillin under microwave irradiation. The catalysts were characterized for their physicochemical properties using XRD, N2 adsorption-desorption isotherms and TEM. All synthesized CeO2 nanostructures showed the presence of diffraction peaks assigned to the presence of cubic fluorite. The N2 adsorption-desorption isotherms showed that all catalysts possess a Type IV isotherm, indicating a mesoporous structure. The TEM image shows the uniform shape of the CeO2 nanostructures, while HRTEM images show that the CeO2 nanostructures are single-crystalline in nature. All catalysts were tested for the direct oxidation of Kenaf stalks using H2O2 as the oxidizing agent in temperatures ranging from 160 to 180 °C for 10-30 min with 0.1-0.3 g catalyst loading under 100-500 W of microwave irradiation. The CeO2-Nps-400 catalyst produced the highest vanillin yields of 3.84% and 4.32% for the direct oxidation of Kenaf stalks and extraction of lignin from Kenaf stalks, respectively. Compared to our earlier study, the highest vanillin yields of 2.90% and 3.70% for direct biomass and extracted lignin were achieved using a Ce/MgO catalyst.
Collapse
Affiliation(s)
- Anita Ramli
- HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.A.S.I.K.A.); (N.A.A.B.)
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Nur Akila Syakida Idayu Khairul Anuar
- HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.A.S.I.K.A.); (N.A.A.B.)
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Nur Aielia Amira Bakhtiar
- HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; (N.A.S.I.K.A.); (N.A.A.B.)
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
| | - Normawati Mohamad Yunus
- Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia;
- Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management for Oil and Gas, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Alina Rahayu Mohamed
- Faculty of Chemical Engineering & Technology, UniMAP, Complex of Academics Jejawi 3, Jejawi, Arau 02600, Perlis, Malaysia;
| |
Collapse
|
6
|
Tarifa P, Ramirez Reina T, González-Castaño M, Arellano-García H. Catalytic Upgrading of Biomass-Gasification Mixtures Using Ni-Fe/MgAl 2O 4 as a Bifunctional Catalyst. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2022; 36:8267-8273. [PMID: 35966174 PMCID: PMC9358644 DOI: 10.1021/acs.energyfuels.2c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biomass gasification streams typically contain a mixture of CO, H2, CH4, and CO2 as the majority components and frequently require conditioning for downstream processes. Herein, we investigate the catalytic upgrading of surrogate biomass gasifiers through the generation of syngas. Seeking a bifunctional system capable of converting CO2 and CH4 to CO, a reverse water gas shift (RWGS) catalyst based on Fe/MgAl2O4 was decorated with an increasing content of Ni metal and evaluated for producing syngas using different feedstock compositions. This approach proved efficient for gas upgrading, and the incorporation of adequate Ni content increased the CO content by promoting the RWGS and dry reforming of methane (DRM) reactions. The larger CO productivity attained at high temperatures was intimately associated with the generation of FeNi3 alloys. Among the catalysts' series, Ni-rich catalysts favored the CO productivity in the presence of CH4, but important carbon deposition processes were noticed. On the contrary, 2Ni-Fe/MgAl2O4 resulted in a competitive and cost-effective system delivering large amounts of CO with almost no coke deposits. Overall, the incorporation of a suitable realistic application for valorization of variable composition of biomass-gasification derived mixtures obtaining a syngas-rich stream thus opens new routes for biosyngas production and upgrading.
Collapse
Affiliation(s)
- Pilar Tarifa
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| | - Tomás Ramirez Reina
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU2 7XH, United Kingdom
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Miriam González-Castaño
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| | - Harvey Arellano-García
- Department
of Process and Plant Technology, Brandenburg
University of Technology (BTU) Cottbus-Senftenberg, Platz der Deutschen 1, 03046 Cottbus, Germany
| |
Collapse
|
7
|
Shin D, Huang R, Jang MG, Choung S, Kim Y, Sung K, Kim TY, Han JW. Role of an Interface for Hydrogen Production Reaction over Size-Controlled Supported Metal Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongjae Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rui Huang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngbi Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kiheon Sung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
8
|
Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes (Basel) 2022. [DOI: 10.3390/pr10061113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmaceutical CEC compounds are a potential threat to man, animals, and the environment. In this study, a sol–gel-derived TiO2 (SynTiO2) was produced and subsequently sonochemically doped with a 1.5 wt% Mo to obtain the final product (Mo (1.5 wt%)/SynTiO2). The as-prepared materials were characterized for phase structure, surface, and optical properties by XRD, TEM, N2 adsorption–desorption BET isotherm at 77 K, and PSD by BJH applications, FTIR, XPS, and UV-Vis measurements in DRS mode. Estimated average crystallite size, particle size, surface area, pore-volume, pore size, and energy bandgap were 16.10 nm, 24.55 nm, 43.30 m2/g, 0.07 cm3/g, 6.23 nm, and 3.05 eV, respectively, for Mo/SynTiO2. The same structural parameters were also estimated for the unmodified SynTiO2 with respective values of 14.24 nm, 16.02 nm, 133.87 m2/g, 0.08 cm3/g, 2.32 nm, and 3.3 eV. Structurally improved (Mo (1.5 wt%)/SynTiO2) achieved ≈100% carbamazepine (CBZ) degradation after 240 min UV irradiation under natural (unmodified) pH conditions. Effects of initial pH, catalyst dosage, initial pollutant concentration, chemical scavengers, contaminant ions, hydrogen peroxide (H2O2), and humic acid (HA) were also investigated and discussed. The chemical scavenger test was used to propose involved photocatalytic degradation process mechanism of CBZ.
Collapse
|
9
|
Preparation and Characterization of Supported Molybdenum Doped TiO2 on α-Al2O3 Ceramic Substrate for the Photocatalytic Degradation of Ibuprofen (IBU) under UV Irradiation. Catalysts 2022. [DOI: 10.3390/catal12050562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TiO2-based photocatalyst materials have been widely studied for the abatement of contaminants of emerging concerns (CECs) in water sources. In this study, 1.5 wt% Mo-doped HRTiO2 was obtained by the sonochemical method. The material was analyzed and characterized for thermal, structural/textural, morphological, and optical properties using TGA-DSC, XRD, TEM, FTIR, XPS, SEM-EDS, BET (N2 adsorption-desorption measurement and BJH application method), and UV-Vis/DRS measurement. By the dip-coating technique, ~5 mg of Mo/HRTiO2 as an active topcoat was deposited on ceramic. In suspension and for photocatalyst activity performance evaluation, 1 g/L of 1.5 wt% (Mo)/HRTiO2 degraded ~98% of initial 50 mg/L IBU concentration after 80 min of 365 nm UV light irradiation and under natural (unmodified) pH conditions. Effects of initial pH condition, catalyst dosage, and initial pollutant concentration were also investigated in the photocatalyst activity performance in suspension. The photocatalyst test on the supported catalyst removed ~60% of initial 5mg/L IBU concentration, while showing an improved performance with ~90% IBU removal employing double and triple numbers of coated disk tablets. After three successive cycle test runs, XRD phase reflections of base TiO2 component of the active photocatalyst supported layer remained unchanged: An indication of surface coat stability after 360 min of exposure under 365 nm UV irradiation.
Collapse
|
10
|
Wen Y, Huang Q, Zhang Z, Huang W. Morphology‐Dependent
Catalysis of
CeO
2
‐Based
Nanocrystal Model Catalysts. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Qiuyu Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Zhenhua Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry Zhejiang Normal University Jinhua 321004 People's Republic of China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Cataly‐sis of Anhui Higher Education Institutes and Department of Chemical Physics University of Science and Technology of China Hefei 230026 People's Republic of China
- Dalian National Laboratory for Clean Energy Chinese Academy of Sciences Dalian 116023 People's Republic of China
| |
Collapse
|
11
|
Nanostructured Ceria-zirconia Supported Ni Catalysts for High Performance CO2 Methanation: Phase and morphology effect on activity. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Synthesis of CeO2-Fe2O3 Mixed Oxides for Low-Temperature Carbon Monoxide Oxidation. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5945169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the CeO2-Fe2O3 mixed oxide catalysts have been prepared by combustion method using gel-created tartaric acid. The ability of effective carbon monoxide (CO) oxidation to carbon dioxide (CO2) by CeO2-Fe2O3 catalyst under low-temperature conditions was also demonstrated. The calcined CeO2-Fe2O3 material has a porous honeycomb structure and good gaseous absorption-desorption ability. The solid solution of CeO2-Fe2O3 mixed oxides was formed by the substitution of Fe+3 ions at some Ce4+ ion sites within the CeO2 crystal lattice. The results also showed that the calcination temperature and the molar ratio of Ce3+ ions to Fe3+ ions (CF) affected the formation of the structural phase and the catalytic efficiency. The catalytic properties of the CeO2-Fe2O3 mixed oxide were good at the CF ratio of 1 : 1, the average crystal size was near 70 nm, and the specific surface area was about 20.22 m2.g-1. The full conversion of CO into CO2 has been accomplished at a relatively low temperature of 270 °C under insufficient O2 conditions.
Collapse
|
13
|
Wang K, Cao Z, Wang J, He ZH, Wang D, Zhang RR, Wang W, Yang Y, Liu ZT. Efficient and selective hydrogenation of quinolines over FeNiCu/MCM-41 catalyst at low temperature: Synergism of Fe-Ni and Ni-Cu alloys. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Synthesis and Characterization of Supported Pd Catalysts for Potential Application in Glycerol Electro-Oxidation. Catalysts 2022. [DOI: 10.3390/catal12020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ceria-supported Pd catalysts encompassing oxides of Cu, Co, and Fe were synthesized and characterized using XRD, TEM, SEM-EDX, TPR, BET, and Raman. After the incorporation of the metal oxides, the surface area and pore volume of the ceria support decreased. XRD showed the presence of the metal oxide phases as well as the support, CeO2. TPR showed that the bimetallic catalyst had improved reducibility compared to the monometallic Pd/CeO2. TEM images showed irregular-shaped particles with an average size distribution of 2–10 nm. SEM-EDX showed that the metal oxides were evenly distributed over the surface of the support. The electro-oxidation of glycerol in an alkaline environment was evaluated using cyclic voltammetry, and the products formed were identified and quantified using GC-MS. Glyceric acid was the dominant product over Pd-CuO/CeO2, while glyceraldehyde and dihydroxyacetone were dominant over Pd-Co3O4/CeO2 and Pd-Fe2O3/CeO2, respectively.
Collapse
|
15
|
Yadav VK, Das T. The effect of MgO and preparation techniques of the FeMnO δ/MgO–Al 2O 3 catalyst used for the vapor phase oxidation of cyclohexane. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of Cy-H over the modified support and catalysts prepared by various methods.
Collapse
Affiliation(s)
- Vijendra Kumar Yadav
- Heterogeneous Catalysis Laboratory (Reaction Engineering), Department of Chemical Engineering, Indian Institute Technology Roorkee, Haridwar-247667, Uttarakhand, India
| | - Taraknath Das
- Heterogeneous Catalysis Laboratory (Reaction Engineering), Department of Chemical Engineering, Indian Institute Technology Roorkee, Haridwar-247667, Uttarakhand, India
| |
Collapse
|
16
|
Ce/Cr and Ce/Co modified ferrite catalysts for high temperature water-gas shift reaction at elevated pressures. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Jomjaree T, Sintuya P, Srifa A, Koo-amornpattana W, Kiatphuengporn S, Assabumrungrat S, Sudoh M, Watanabe R, Fukuhara C, Ratchahat S. Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Rational Design of Non-Precious Metal Oxide Catalysts by Means of Advanced Synthetic and Promotional Routes. Catalysts 2021. [DOI: 10.3390/catal11080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalysis is an indispensable part of our society, involved in numerous energy and environmental applications, such as the production of value-added chemicals/fuels, hydrocarbons processing, fuel cells applications, abatement of hazardous pollutants, among others [...]
Collapse
|
19
|
Silver Doped Zinc Stannate (Ag-ZnSnO3) for the Photocatalytic Degradation of Caffeine under UV Irradiation. WATER 2021. [DOI: 10.3390/w13091290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contaminants of emerging concerns (CECs) spread across a wide range of organic product compounds. As biorecalcitrants, their removal from conventional wastewater treatment systems remains a herculean task. To address this issue, heterogenous solar driven advanced oxidation process based-TiO2 and other semiconductor materials has been extensively studied for their abatement from wastewater sources. In this study, we have synthesized by hydrothermal assisted co-precipitation Ag doped ZnSnO3. Structural and morphological characterizations were performed via X-ray diffraction (XRD), Fourier transform infra-red (FTIR), N2 adsorption-desorption at 77 K by Brunauer-Emmet-Teller (BET) and Barrett, Joyner, and Halenda (BJH) methods, Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy coupled with Energy dispersive spectroscopy (SEM-EDS), and UV-visible absorption in Diffuse reflectance spectroscopy (UV-vis/DRS) mode. Crystallite size estimate for Ag-ZnSnO3 and undoped form was 19.4 and 29.3 nm, respectively, while respective TEM particle size estimate was 79.0 nm and 98.2 nm. BET surface area and total pore volume by BJH for Ag-ZnSnO3 were estimated with respective values of 17.2 m2/g and 0.05 cm3/g in comparison to 18.8 m2/g and 0.06 cm3/g for ZnSnO3. Derived energy band gap (Eg) values were 3.8 eV for Ag-ZnSnO3 and 4.2 eV for ZnSnO3. Photocatalytic performance of Ag-ZnSnO3 was tested towards caffeine achieving about 68% removal under (natural) unmodified pH = 6.50 and almost 100% removal at initial pH around 7.5 after 4 h irradiation. The effect of initial pH, catalyst dosage, pollutant concentration, charge scavengers, H2O2, contaminant inorganic ions (anions) as well as humic acid (HA) on the photocatalyst activity over caffeine degradation were assessed. In accordance with the probation test of the reactive species responsible for photocatalytic degradation process, a reaction mechanism was deduced.
Collapse
|
20
|
Zhou Y, He J, Chen D, Li X, Wang Y, Xiao J, Li N, Xu Q, Li H, He J, Lu J. Flower-like Pt/Fe 2O 3–CeO 2 Catalysts for Highly Efficient Low-Temperature Catalytic Oxidation of Toluene. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yuanbo Zhou
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jiaqin He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Dongyun Chen
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Xunxun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Yaru Wang
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jun Xiao
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Najun Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Qingfeng Xu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Hua Li
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jinghui He
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| | - Jianmei Lu
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review. Catalysts 2021. [DOI: 10.3390/catal11040452] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The rational design and fabrication of highly-active and cost-efficient catalytic materials constitutes the main research pillar in catalysis field. In this context, the fine-tuning of size and shape at the nanometer scale can exert an intense impact not only on the inherent reactivity of catalyst’s counterparts but also on their interfacial interactions; it can also opening up new horizons for the development of highly active and robust materials. The present critical review, focusing mainly on our recent advances on the topic, aims to highlight the pivotal role of shape engineering in catalysis, exemplified by noble metal-free, CeO2-based transition metal catalysts (TMs/CeO2). The underlying mechanism of facet-dependent reactivity is initially discussed. The main implications of ceria nanoparticles’ shape engineering (rods, cubes, and polyhedra) in catalysis are next discussed, on the ground of some of the most pertinent heterogeneous reactions, such as CO2 hydrogenation, CO oxidation, and N2O decomposition. It is clearly revealed that shape functionalization can remarkably affect the intrinsic features and in turn the reactivity of ceria nanoparticles. More importantly, by combining ceria nanoparticles (CeO2 NPs) of specific architecture with various transition metals (e.g., Cu, Fe, Co, and Ni) remarkably active multifunctional composites can be obtained due mainly to the synergistic metalceria interactions. From the practical point of view, novel catalyst formulations with similar or even superior reactivity to that of noble metals can be obtained by co-adjusting the shape and composition of mixed oxides, such as Cu/ceria nanorods for CO oxidation and Ni/ceria nanorods for CO2 hydrogenation. The conclusions derived could provide the design principles of earth-abundant metal oxide catalysts for various real-life environmental and energy applications.
Collapse
|
22
|
He L, Wu H, Zhang W, Bai X, Chen J, Ikram M, Wang R, Shi K. High-dispersed Fe 2O 3/Fe nanoparticles residing in 3D honeycomb-like N-doped graphitic carbon as high-performance room-temperature NO 2 sensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124252. [PMID: 33082020 DOI: 10.1016/j.jhazmat.2020.124252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
This work illustrates a simple polymer thermal treatment strategy to develop high-dispersed Fe2O3/Fe nanoparticles residing in honeycomb-like N-doped graphitic carbon (Fe2O3/Fe@N-GC). The as-prepared Fe2O3/Fe@N-GC composites consist of three-dimensional (3D) strutted interconnective graphitic carbon frame, which would not only refrain from restacking and facilitate the charge transfer, but also provide more reaction interface between gas molecules and materials. Benefiting from the synergistic merits of Fe2O3/Fe, N-doping graphitic carbon, high surface area and unique 3D architectures, the optimal Fe2O3/Fe@N-GC presents impressive sensitivity and selectivity for NO2 gas detection at room temperature with the response of 25.48-100 ppm, response time of 2.13 s, recovery time of 11.73 s, detection limit of 10 ppb and as long as 60 days of stability. As a result, the present Fe2O3/Fe@N-GC composite with an easy fabrication method and high sensitivity, selectivity, stabitliy towards NO2 at RT would inspire various designs based on the 3D honeycomb structure for more real applications in gas sensors.
Collapse
Affiliation(s)
- Lang He
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China; The Institute of Technological Sciences, Wuhan University, Wuhan 430072, PR China
| | - Hongyuan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Wenyuan Zhang
- School of Chemistry and Chemical Engineering Harbin Institute of Technology, Harbin 150080, PR China
| | - Xue Bai
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China
| | - Junkun Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China
| | - Muhammad Ikram
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China
| | - Ruihong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China.
| | - Keying Shi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
23
|
Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. SEPARATIONS 2021. [DOI: 10.3390/separations8030024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Photocatalytic coatings of TiO2/ZnO/CuPc were developed on stainless steel substrates by subsequent sol gel dip coating for TiO2, spray pyrolysis for ZnO, and spin coating for copper (ii) phthalocyanine (CuPc) deposition. The latter compound was successfully prepared using a Schiff-based process. The materials and coatings developed were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy with attached energy dispersive spectroscopy (SEM-EDS), UV-Vis spectroscopy, room temperature photoluminescence (RTPL) spectroscopy, H1-nuclear magnetic resonance (1H-NMR) spectroscopy, C13-nuclear magnetic resonance (13C-NMR) spectroscopy, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS). The as-deposited TiO2/ZnO/CuPc on stainless steel retained in pristine state the structural and morphological/spectroscopic characteristics of its respective components. Estimated energy band gap values were 3.22 eV, 3.19 eV, 3.19 eV for TiO2, ZnO, TiO2/ZnO respectively and 1.60 eV, 2.44 eV, and 2.92 eV for CuPc. The photocatalytic efficiency of the fabricated TiO2/ZnO/CuPc coatings was tested toward ibuprofen (IBF). After 4 h irradiation under 365 nm UV, an increased degradation of about 80% was achieved over an initial 5 mg/L ibuprofen (IBF). This was much higher compared to about 42% and 18% IBF degradation by TiO2/ZnO and TiO2 thin film, respectively. In all cases, the stability of the best-performing photocatalyst was investigated showing a small decline to 77% of IBF degradation after the 5th cycle run. The effect of pH, reactive oxygen species (ROS) probe, shed light on a possible catalytic mechanism that was suggested.
Collapse
|
24
|
Enhanced Photocatalytic Activity of CuWO4 Doped TiO2 Photocatalyst Towards Carbamazepine Removal under UV Irradiation. SEPARATIONS 2021. [DOI: 10.3390/separations8030025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500 °C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly.
Collapse
|
25
|
Effect of alkali (Cs) doping on the surface chemistry and CO2 hydrogenation performance of CuO/CeO2 catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. SEPARATIONS 2020. [DOI: 10.3390/separations7040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the synthesis of two different types of photocatalysts, namely, boron/sodium fluoride co-doped titanium dioxide (B/NaF-TiO2), and its analogue, a dye-sensitized form of silicon-based axial methoxy substituted phthalocyanine (B/NaF-TiO2SiPc). Structural and morphological characterizations were performed via X-ray diffraction (XRD); Fourier transform infra-red (FTIR); N2 adsorption–desorption at 77 K by Brunauer–Emmett–Teller (BET) and Barrett, Joyner, and Halenda (BJH) methods; transmission electron microscopy (TEM); X-ray photoelectron spectroscopy (XPS); and UV–visible absorption spectroscopy. The estimated crystallite size of pure TiO2 and pure B/NaF-TiO2 was 24 nm, and that of B/NaF-TiO2SiPc was 29 nm, whereas particle sizes determined by TEM were 25, 28, and 31 nm for pure TiO2, B/NaF-TiO2 and B/NaF-TiO2SiPc respectively. No significant differences between B/NaF-TiO2 and B/NaF-TiO2SiPc were observed for surface area by (BET) analysis (13 m2/g) or total pore volume by the BJH application model (0.05 cm3/g). Energy band gap values obtained for B/NaF-TiO2 and B/NaF-TiO2SiPc were 3.10 and 2.90 eV respectively, lower than pure TiO2 (3.17 eV). The photocatalytic activity of the synthesized materials was tested using carbamazepine (CBZ) as the model substrate. Carbamazepine removal after 4 h of irradiation was almost 100% for B/NaF-TiO2 and 70% for B/NaF-TiO2SiPc; however, the substrate mineralization proceeded slower, suggesting the presence of organic intermediates after the complete disappearance of the pollutant.
Collapse
|
27
|
Abstract
Gold catalysts have found applications in many reactions of both industrial and environmental importance. Great interest has been paid to the development of new processes that reduce energy consumption and minimize pollution. Among these reactions, the catalytic oxidation of carbon monoxide (CO) is an important one, considering that a high concentration of CO in the atmosphere creates serious health and environmental problems. This paper examines the most important achievements and conclusions arising from the own authorship contributions concerning (2 wt. % Au)/Ce1−xZrxO2 catalyst’s active sites in low-temperature CO oxidation. The main findings of the present review are: (1) The effect of preparing conditions on Au crystallite size, highlighting some of the fundamental underpinnings of gold catalysis: the Au surface composition and the poisoning effect of residual chloride on the catalytic activity of (2 wt. % Au)/Ce1−xZrxO2 catalysts in CO oxidation; (2) The identification of ion clusters related to gold and their effect on catalyst’ surface composition; (3) The importance of physicochemical properties of oxide support (e.g., its particle size, oxygen mobility at low temperature and redox properties) in the creation of catalytic performance of Au catalysts; (4) The importance of oxygen vacancies, on the support surface, as the centers for oxygen molecule activation in CO reaction; (5) The role of moisture (200–1000 ppm) in the generation of enhanced CO conversion; (6) The Au-assisted Mars-van Krevelen (MvK) adsorption–reaction model was pertinent to describe CO oxidation mechanism. The principal role of Au in CO oxidation over (2 wt. % Au)/Ce1−xZrxO2 catalysts was related to the promotion in the transformation process of reversibly adsorbed or inactive surface oxygen into irreversibly adsorbed active species; (7) Combination of metallic gold (Au0) and Au-OH species was proposed as active sites for CO adsorption. These findings can help in the optimization of Au-containing catalysts.
Collapse
|
28
|
The Effect of Shape-Controlled Pt and Pd Nanoparticles on Selective Catalytic Hydrodechlorination of Trichloroethylene. Catalysts 2020. [DOI: 10.3390/catal10111314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tailoring the shape of nanoscale materials enables obtaining morphology-controlled surfaces exhibiting specific interactions with reactants during catalytic reactions. The specifics of nanoparticle surfaces control the catalytic performance, i.e., activity and selectivity. In this study, shape-controlled Platinum (Pt) and Palladium (Pd) nanoparticles with distinct morphology were produced, i.e., cubes and cuboctahedra for Pt and spheres and polyhedra/multiple-twins for Pd, with (100), (111 + 100), curved/stepped and (111) facets, respectively. These particles with well-tuned surfaces were subsequently deposited on a Zirconium oxide (ZrO2) support. The morphological characteristics of the particles were determined by high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD), while their adsorption properties were investigated by Fourier transform infrared spectroscopy (FTIR) of CO adsorbed at room temperature. The effect of the nanoparticle shape and surface structure on the catalytic performance in hydrodechlorination (HDCl) of trichloroethylene (TCE) was examined. The results show that nanoparticles with different surface orientations can be employed to affect selectivity, with polyhedral and multiply-twinned Pd exhibiting the best ethylene selectivity.
Collapse
|
29
|
Hydrothermal Synthesis of ZnO–doped Ceria Nanorods: Effect of ZnO Content on the Redox Properties and the CO Oxidation Performance. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rational design of highly efficient, noble metal-free metal oxides is one of the main research priorities in the area of catalysis. To this end, the fine tuning of ceria-based mixed oxides by means of aliovalent metal doping has currently received particular attention due to the peculiar metal-ceria synergistic interactions. Herein, we report on the synthesis, characterization and catalytic evaluation of ZnO–doped ceria nanorods (NR). In particular, a series of bare CeO2 and ZnO oxides along with CeO2/ZnO mixed oxides of different Zn/Ce atomic ratios (0.2, 0.4, 0.6) were prepared by the hydrothermal method. All prepared samples were characterized by X-ray diffraction (XRD), N2 physisorption, temperature-programmed reduction (TPR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The CO oxidation reaction was employed as a probe reaction to gain insight into structure-property relationships. The results clearly showed the superiority of mixed oxides as compared to bare ones, which could be ascribed to a synergistic ZnO–CeO2 interaction towards an improved reducibility and oxygen mobility. A close correlation between the catalytic activity and oxygen storage capacity (OSC) was disclosed. Comparison with relevant literature studies verifies the role of OSC as a key activity descriptor for reactions following a redox-type mechanism.
Collapse
|
30
|
|
31
|
Ghosh T, Choudhary N, Mobin SM. Design and Synthesis of Silver Decorated Fe
3
O
4
@ Fe Doped CeO
2
Core‐Shell Ternary Composite as Highly Efficient Nanocatalyst for Selective Oxidation of Alkenes. ChemistrySelect 2020. [DOI: 10.1002/slct.202002349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Topi Ghosh
- Discipline of ChemistryIndian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Neha Choudhary
- Discipline of ChemistryIndian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Shaikh M. Mobin
- Discipline of ChemistryIndian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials ScienceIndian Institute of Technology Indore Simrol Khandwa Road Indore 453552 India
- Discipline of Biosciences and Bio-Medical EngineeringIndian Institute of Technology Indore Simrol Khandwa Road Indore 453552 India
| |
Collapse
|
32
|
Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes (Basel) 2020. [DOI: 10.3390/pr8070847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ceria-based mixed oxides have been widely studied in catalysis due to their unique surface and redox properties, with implications in numerous energy- and environmental-related applications. In this regard, the rational design of ceria-based composites by means of advanced synthetic routes has gained particular attention. In the present work, ceria–titania composites were synthesized by four different methods (precipitation, hydrothermal in one and two steps, Stöber) and their effect on the physicochemical characteristics and the CO oxidation performance was investigated. A thorough characterization study, including N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and H2 temperature-programmed reduction (H2-TPR) was performed. Ceria–titania samples prepared by the Stöber method, exhibited the optimum CO oxidation performance, followed by samples prepared by the hydrothermal method in one step, whereas the precipitation method led to almost inactive oxides. CeO2/TiO2 samples synthesized by the Stöber method display a rod-like morphology of ceria nanoparticles with a uniform distribution of TiO2, leading to enhanced reducibility and oxygen storage capacity (OSC). A linear relationship was disclosed among the catalytic performance of the samples prepared by different methods and the abundance of reducible oxygen species.
Collapse
|
33
|
Varvoutis G, Lykaki M, Stefa S, Papista E, Carabineiro SA, Marnellos GE, Konsolakis M. Remarkable efficiency of Ni supported on hydrothermally synthesized CeO2 nanorods for low-temperature CO2 hydrogenation to methane. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
34
|
Wang T, Zhou RX. Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce,Zr,La)O 2 catalysts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113782. [PMID: 31855674 DOI: 10.1016/j.envpol.2019.113782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Rh/(Ce,Zr,La)O2 (CZL) catalysts with different Ce/Zr molar ratios of 1:0, 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 and 0:1 were prepared. The relationship of microstructure, dynamic oxygen mobility and the redox properties with catalytic activity for HC, CO and NOx eliminations were investigated. The results demonstrate that CZL mixed oxide with Ce/Zr ratio of 1:1 exhibits the largest OSC values as 904.3 umol·g-1 and structural defects. The increase of oxygen vacancies and structural defects would promote the interaction between Rh species and CZL mixed oxides, which further promotes the stabilization of RhOx particles and enhances the oxygen storage/release ability. Rh/CZLx catalysts with Ce/Zr molar ratio of 1:1-1:4 exhibit better catalytic activity and wider dynamic operation window due to their higher DOSC.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, PR China
| | - Ren-Xian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, PR China.
| |
Collapse
|
35
|
Co-Supported CeO2Nanoparticles for CO Catalytic Oxidation: Effects of Different Synthesis Methods on Catalytic Performance. Catalysts 2020. [DOI: 10.3390/catal10020243] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrothermal and co-precipitation methods were studied as two different methods for the synthesis of CeO2nanocatalysts. Co/CeO2 catalysts supported by 2, 4, 6, or 8wt% Co were further synthesized through impregnation and the performance of the catalytic oxidation of CO has been investigated. The highest specific surface area and the best catalytic performance was obtained by the catalyst 4wt% Co/CeO2 with the CeO2 support synthesized by the hydrothermal method (4% Co/CeO2-h), which yielded 100% CO conversion at 130 °C. The formation of CeO2 nanoparticles was confirmed by TEM analysis. XRD and SEM-EDX mapping analyses indicated that CoOx is highly dispersed on the 4% Co/CeO2-h catalyst surface. H2-TPR and O2-TPD results showed that 4% Co/CeO2-h possesses the best redox properties and the highest amount of chemically adsorbed oxygen on its surface among all tested catalysts. Raman and XPS spectra showed strong interactions between highly dispersed Co2+ active sites and exposed Ce3+ on the surface of the CeO2 support, resulting in the formation of the strong redox cycle Ce4+ + Co2+↔ Ce3+ + Co3+.This may explain that 4% Co/CeO2-h exhibited the best catalytic activity among all tested catalysts.
Collapse
|
36
|
Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions. Catalysts 2020. [DOI: 10.3390/catal10020160] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Catalysis is an indispensable part of our society, massively involved in numerous energy and environmental applications. Although, noble metals (NMs)-based catalysts are routinely employed in catalysis, their limited resources and high cost hinder the widespread practical application. In this regard, the development of NMs-free metal oxides (MOs) with improved catalytic activity, selectivity and durability is currently one of the main research pillars in the area of heterogeneous catalysis. The present review, involving our recent efforts in the field, aims to provide the latest advances—mainly in the last 10 years—on the rational design of MOs, i.e., the general optimization framework followed to fine-tune non-precious metal oxide sites and their surrounding environment by means of appropriate synthetic and promotional/modification routes, exemplified by CuOx/CeO2 binary system. The fine-tuning of size, shape and electronic/chemical state (e.g., through advanced synthetic routes, special pretreatment protocols, alkali promotion, chemical/structural modification by reduced graphene oxide (rGO)) can exert a profound influence not only to the reactivity of metal sites in its own right, but also to metal-support interfacial activity, offering highly active and stable materials for real-life energy and environmental applications. The main implications of size-, shape- and electronic/chemical-adjustment on the catalytic performance of CuOx/CeO2 binary system during some of the most relevant applications in heterogeneous catalysis, such as CO oxidation, N2O decomposition, preferential oxidation of CO (CO-PROX), water gas shift reaction (WGSR), and CO2 hydrogenation to value-added products, are thoroughly discussed. It is clearly revealed that the rational design and tailoring of NMs-free metal oxides can lead to extremely active composites, with comparable or even superior reactivity than that of NMs-based catalysts. The obtained conclusions could provide rationales and design principles towards the development of cost-effective, highly active NMs-free MOs, paving also the way for the decrease of noble metals content in NMs-based catalysts.
Collapse
|