1
|
Lewis JMT, Bower DM, Pavlov AA, Li X, Wahl SZ, Eigenbrode JL, McAdam AC. Organic Products of Fatty Acid and Magnesium Sulfate Mixtures after Gamma Radiolysis: Implications for Missions to Europa. ASTROBIOLOGY 2024; 24:1166-1186. [PMID: 39587956 DOI: 10.1089/ast.2024.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
If ocean-derived materials are present at Europa's surface, they would represent accessible records of ocean chemistry and habitability, but such materials would be further processed by Europa's harsh radiation environment. In this study, saturated fatty acids were precipitated onto a Europa-relevant hydrated magnesium sulfate and exposed to gamma radiation doses up to 2 MGy at -196°C. Alkane chains, with carbon numbers one less than those of the starting fatty acids, were the most abundant radiolysis products in solvent and thermal extracts analyzed by gas chromatography mass spectrometry. Detections of monounsaturated fatty acids and combined radiolysis products were attributed to the experiment's Europa-like parameters. Additionally, elevated concentrations of shorter-chain saturated fatty acids suggest that gamma radiation induced charge remote fragmentation of the alkyl chains of some starting fatty acids under these experimental conditions. Quantitation of fatty acid concentrations in the irradiated samples enabled the calculation of a radiolysis constant that indicated exposure to a 5 MGy dose of gamma radiation would have resulted in a ∼90% loss of the initial fatty acid population. The samples were further studied by Raman spectroscopy and laser desorption and ionization mass spectrometry, which characterized the distribution of fatty acids and their radiolysis products on sulfate surfaces. The substantial loss of starting fatty acids typically seen with increasing radiation dose, along with the remarkable diversity of radiolysis products identified, suggests that the detection of fatty acids in irradiated sulfate deposits on Europa will be challenged by rapid destruction of any initial fatty acid populations and scrambling of their residual signals by a myriad of organic radiolysis products. If missions to Europa encounter sulfate deposits, targeting minimally irradiated units may still enable the detection of surviving fatty acid signatures that could inform about Europa's subsurface chemistry and habitability.
Collapse
Affiliation(s)
- James M T Lewis
- Department of Physics and Astronomy, Howard University, Washington, District of Columbia, USA
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
| | - Dina M Bower
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
| | | | - Xiang Li
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Sarinah Z Wahl
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Research and Exploration in Space Science and Technology, NASA GSFC, Greenbelt, Maryland, USA
- Southeastern Universities Research Association, Washington, District of Columbia, USA
| | | | - Amy C McAdam
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| |
Collapse
|
2
|
Hydrodeoxygenation–Isomerization of Methyl Palmitate over SAPO-11-Supported Ni-Phosphide Catalysts. Catalysts 2022. [DOI: 10.3390/catal12111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ni-phosphide catalysts on SAPO-11 were studied in the hydrodeoxygenation–isomerization of methyl palmitate (C15H31COOCH3—MP). The catalysts were synthesized using temperature-programmed reduction (TPR) of a phosphate precursor ((NH4)2HPO4 and Ni(CH3CH2COO)2), TPR of a phosphite precursor (H3PO3 and Ni(OH)2), and using phosphidation of Ni/SAPO-11 by PPh3 in the liquid phase. The samples were characterized by ICP-AES chemical analysis, N2 physisorption, NH3-TPD, XRD, and TEM. First, the screening of the catalysts prepared by the TPR method was carried out in a semi-batch autoclave to determine the influence of the preparation method and conditions on one-pot HDO–isomerization (290–380 °C, 2–3 MPa). The precursor’s nature and the amount of phosphorus strongly influenced the activity of the catalysts and their surface area and acidity. Isomerization occurred only at a low P content (Ni/P = 2/1) and blocking of the SAPO-11 channels by unreduced phosphates at higher P contents did not allow us to obtain iso-alkanes. Experiments with liquid phosphidation samples in a continuous-flow reactor also showed the strong dependence of activity on phosphidation duration as well as on Ni content. The highest yield of isomerized products (66% iso-C15–16 hydrocarbons, at complete conversion of O-containing compounds, 340 °C, 2 MPa, and LHSV = 5.3 h−1) was obtained over 7% Ni2P/SAPO-11 prepared by the liquid phosphidation method.
Collapse
|
3
|
Abdelaziz MM, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, Khalil IA. Respirable spray dried vancomycin coated magnetic nanoparticles for localized lung delivery. Int J Pharm 2022; 611:121318. [PMID: 34838622 DOI: 10.1016/j.ijpharm.2021.121318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/28/2023]
Abstract
Bacterial pneumonia is a common pulmonary infection responsible for premature death. Biomaterials based-carriers loaded with antibiotics enhance drug potency through localizing the therapy, minimizing the associated adverse effects, and improving patient compliance. Herein, this study reports the preparation of an inhalable dry powder formulation composed of a nano-in-microparticles. Vancomycin was adsorbed on the core of magnetic nanoparticles followed by spray drying into lactose/dextran to optimize the aerodynamic performance and allow the local delivery of the drug into the bacterial pneumonia infection site. Lactose and Dextran are polysaccharides commonly used for pulmonary delivery due to their optimum aerodynamic performance and biocompatibility. The preparation of the nano-in-micro particles with optimum properties was confirmed using FTIR, TEM, SEM, Laser-diffraction, ICP-AES and TGA. The TEM micrographs confirmed the formation of spherical magnetic nanoparticles with a diameter 14.7 ± 5.9 nm and a coating thickness 3 - 16 nm, while laser diffraction showed that outer microparticles exhibited a mean diameter < 5 µm. The formulations demonstrated a promising activity against S. aureus and MRSA and better biocompatibility using MTT assay. In vivo safety and pharmacokinetic studies confirmed the localization of VAN in lung tissue and minimized adverse effects compared to free VAN. Therefore, the developed nano-in-microparticles confers a good potential for eradication of lung infections.
Collapse
Affiliation(s)
| | - Amr Hefnawy
- Smyth Lab, College of Pharmacy, University of Texas at Austin, TX 78712, USA
| | - Asem Anter
- Microbiology Unit, Drug Factory, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12582, Egypt.
| |
Collapse
|
4
|
Ishihara A, Tsuchimori Y, Hashimoto T. Dehydrocyclization-cracking of methyl oleate by Pt catalysts supported on a ZnZSM-5-Al 2O 3 hierarchical composite. RSC Adv 2021; 11:19864-19873. [PMID: 35479253 PMCID: PMC9033740 DOI: 10.1039/d1ra02677a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022] Open
Abstract
The dehydrocyclization–cracking of methyl oleate was performed by ZnZSM-5–Al2O3 hierarchical composite-supported Pt catalysts in the range of 450–550 °C under 0.5 MPa hydrogen pressure. Most catalysts converted methyl oleate completely and produced aromatics with more than 10 wt% yield as well as valuable fuels even at 450 °C. The reactivity of catalysts changed remarkably depending on the addition method of Pt, while supporting Pt of 0–0.16 wt% did not affect the pore structure of each catalyst. When Pt was introduced into the composite support by the conventional impregnation method, remarkable hydrocracking proceeded through the decarboxylation and decarbonylation of methyl oleate and the successive conversion of C17 fragments and gave the significant amounts of gaseous products. Nevertheless, the selectivity for the aromatics of the gasoline fraction was relatively high and the yields of aromatics reached maximum 19% at 500 °C under 0.5 MPa, suggesting that gaseous olefins would be cyclized through the Diels–Alder reaction on ZnZSM-5 in the composite support. In contrast, when Pt was introduced into catalysts by ion-exchange with ZnZSM-5, the significant conversion of methyl oleate was inhibited and produced liquid fuels in a wide range. The ideal reaction route in the dehydrocyclization–cracking of methyl oleate catalyzed by Pt/ZnZSM-5–Al2O3 is to produce xylene, toluene, and hydrogen through decarboxylation.![]()
Collapse
Affiliation(s)
- Atsushi Ishihara
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University Japan
| | - Yuu Tsuchimori
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University Japan
| | - Tadanori Hashimoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University Japan
| |
Collapse
|
5
|
Effect of Lauric Acid on the Thermal and Mechanical Properties of Polyhydroxybutyrate (PHB)/Starch Composite Biofilms. INT J POLYM SCI 2020. [DOI: 10.1155/2020/7947019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biopolymer of natural origin, one of the suitable alternatives for synthetic plastics. However, pure PHB has a high production cost, is relatively brittle, and has poor processability, hence its limited application. Combining PHB with biomass fillers and plasticizers can significantly improve the properties of the polymer, leading to its commercial usage. In this study, PHB was incorporated with starch (S) as a cheap biomass filler and lauric acid (LA) as a potential plasticizer. The PHB/S/LA composites were prepared using a modified solvent casting method with the incremental addition of LA. The PHB/S ratio was maintained at a ratio of 80/20 (w/w). Physicochemical characterization via EDS, XRD, and FTIR proved that the composite components have blended through nucleation and plasticization processes. The morphology of the PHB/S blends was found to be a heterogeneous matrix, with decreased inhomogeneity upon the addition of LA in the composite. Thermal characterization done by TGA and DSC showed that the thermal properties of PHB/S films improved with the addition of LA. Mechanical tests (UTM) proved that the elastic strain of the films also increased with the addition of LA, although the tensile strength decreased slightly compared to pure PHB/S. Overall, the results of this study provide baseline information on the improvement of PHB-based bioplastics.
Collapse
|
6
|
Catalysis for Global Development. Contributions around the Iberoamerican Federation of Catalysis. Catalysts 2020. [DOI: 10.3390/catal10030341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Following biennial meetings held since 1968, the Iberoamerican Federation of Catalysis Societies (FISoCat), the Portuguese Chemical Society (SPQ) and the University of Coimbra jointly organized the XXVI Iberoamerican Congress on Catalysis (CICat 2018), which took place in the historic city of Coimbra, Portugal, between the 9th and 14th of September 2018 [...]
Collapse
|
7
|
Fast Catalytic Pyrolysis of Dilaurin in the Presence of Sodium Carbonate Alone or Combined with Alumina. Catalysts 2019. [DOI: 10.3390/catal9120993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this work was to study the fast pyrolysis of a diglyceride intermediate compound during the conversion of triglycerides to fatty acids, esters and/or hydrocarbons. Dilaurin was selected as a model compound. Pyrolysis was conducted in a micro-pyrolyzer coupled to GC-MS equipment at 500, 550 and 600 °C for 15 s in the presence of sodium carbonate (Na2CO3) as the catalyst. Results were compared to pyrolysis data using γ-Al2O3 as a catalyst. At 600 °C with Na2CO3 almost total conversion of diglyceride was obtained, with the formation of 41.3% hydrocarbons (C3 to C13). In the same conditions using alumina as a catalyst 68.5% of hydrocarbons were obtained. Na2CO3 presented itself as an efficient feedstock modifier, allowing pre-cracking and partial deoxygenation of the load. The use of the Na2CO3 and γ-Al2O3 conjugated system in layers reduced the fatty acid content in the products, increasing both the reagent conversion and the hydrocarbon variety (C3 to C23). This work suggests that the use of a double bed catalytic reactor is suitable for performing a deoxygenating pretreatment and producing hydrocarbons compatible with current liquid fuels, being potentially useful for more complex raw materials such as those from biomass treatments.
Collapse
|