1
|
Janiszewska E, Kowalska-Kuś J, Wiktorowska J, Jankowska A, Tabero A, Held A, Kowalak S. Generation of Acid Sites in Nanostructured KIT-6 Using Different Methods to Obtain Efficient Acidic Catalysts for Glycerol Acetalization to Solketal. Molecules 2024; 29:5512. [PMID: 39683672 DOI: 10.3390/molecules29235512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study explored the preparation of pure silica KIT-6, as well as KIT-6 materials with an enhanced concentration of surface OH groups through aluminum incorporation or NH4F treatment. These materials with various contents of surface OH groups were subsequently modified via the post-synthesis grafting of sulfonic groups using 3-mercaptopropyltrimethoxysilane as a precursor, followed by oxidation to introduce acidic sites. The catalysts were thoroughly characterized using XRD, nitrogen adsorption/desorption, SEM-EDS, TEM, and FT-IR techniques to confirm their structural and chemical properties. The catalytic activity of acid-functionalized mesoporous silicas of the KIT-6 structure was further evaluated in the acetalization of glycerol to produce solketal. The results demonstrated a significant influence of the surface OH group concentration and acidic site density on catalytic performance, with KIT-6_F_SO3H showing the highest efficiency in glycerol-to-solketal conversion. This study provides valuable insights into the design of efficient catalytic systems for the valorization of biodiesel-derived glycerol into high-value chemicals, offering a sustainable approach to waste glycerol utilization.
Collapse
Affiliation(s)
- Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Jolanta Kowalska-Kuś
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Justyna Wiktorowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aldona Jankowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agata Tabero
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Held
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Stanisław Kowalak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Kowalska-Kuś J, Malaika A, Held A, Jankowska A, Janiszewska E, Zieliński M, Nowińska K, Kowalak S, Końska K, Wróblewski K. Synthesis of Solketal Catalyzed by Acid-Modified Pyrolytic Carbon Black from Waste Tires. Molecules 2024; 29:4102. [PMID: 39274951 PMCID: PMC11397316 DOI: 10.3390/molecules29174102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Solketal, a widely used glycerol-derived solvent, can be efficiently synthesized through heterogeneous catalysis, thus avoiding the significant product losses typically encountered with aqueous work-up in homogeneous catalysis. This study explores the catalytic synthesis of solketal using solid acid catalysts derived from recovered carbon blacks (rCBs), which are obtained through the pyrolysis of end-of-life tires. This was further converted into solid acid catalysts through the introduction of acidic functional groups using concentrated H2SO4 or 4-benzenediazonium sulfonate (BDS) as sulfonating agents. Additionally, post-pyrolytic rCB treated with glucose and subsequently sulfonated with sulfuric acid was also prepared. Comprehensive characterization of the initial and modified rCBs was performed using techniques such as elemental analysis, powder X-ray diffraction, thermogravimetric analysis, a back titration method, and both scanning and transmission electron microscopy, along with X-ray photoelectron spectroscopy. The catalytic performance of these samples was evaluated through the batch mode glycerol acetalization to produce solketal. The modified rCBs exhibited substantial catalytic activity, achieving high glycerol conversions (approximately 90%) and high solketal selectivity (around 95%) within 30 min at 40 °C. This notable activity was attributed to the presence of -SO3H groups on the surface of the functionalized rCBs. Reusability tests indicated that only rCBs modified with glucose demonstrated acceptable catalytic stability in subsequent acetalization cycles. The findings underscore the potential of utilizing end-of-life tires to produce effective acid catalysts for glycerol valorization processes.
Collapse
Affiliation(s)
- Jolanta Kowalska-Kuś
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Anna Malaika
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Held
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Aldona Jankowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Michał Zieliński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Krystyna Nowińska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Stanisław Kowalak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | | | | |
Collapse
|
3
|
Dias CN, Viana AM, Cunha-Silva L, Balula SS. The Role of the Heterogeneous Catalyst to Produce Solketal from Biodiesel Waste: The Key to Achieve Efficiency. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:828. [PMID: 38786785 PMCID: PMC11124048 DOI: 10.3390/nano14100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The valorization of the large amount of crude glycerol formed from the biodiesel industry is of primordial necessity. One possible direction with high interest to the biorefinery sector is the production of fuel additives such as solketal, through the acetalization of glycerol with acetone. This is a chemical process that conciliates high sustainability and economic interest, since solketal contributes to the fulfillment of a Circular Economy Model through its use in biodiesel blends. The key to guarantee high efficiency and high sustainability for solketal production is the use of recovery and recyclable heterogeneous catalysts. Reported works indicate that high yields are attributed to catalyst acidity, mainly the ones containing Brönsted acidic sites. On the other hand, the catalyst stability and its recycling capacity are completely dependent of the support material and the acidic sites incorporation methodology. This review intends to conciliate the information spread on this topic and indicate the most assertive strategies to achieve high solketal production in short reaction time during various reaction cycles.
Collapse
Affiliation(s)
| | | | | | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (C.N.D.); (A.M.V.); (L.C.-S.)
| |
Collapse
|
4
|
Al-Kurdhani JMH, Wang H. The Synthesis of Glycerol Carbonate from Glycerol and Carbon Dioxide over Supported CuO-Based Nanoparticle Catalyst. Molecules 2023; 28:molecules28104164. [PMID: 37241907 DOI: 10.3390/molecules28104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
A series of supported CuO-based nanoparticle catalysts were prepared by the impregnation method and used for the synthesis of glycerol carbonate from glycerol and CO2 in the presence of 2-cyanopyridine as a dehydrant and DMF as a solvent. The effects of supports (activated alumina, silicon dioxide, graphene oxide, graphene, and activated carbon), CuO loading amount, calcination temperature, and reaction parameters on the catalytic activity of the catalyst were investigated in detail. XRD, FTIR, SEM, BET, and CO2-TPD were used for the characterization of the prepared catalysts. It is found that CuO/Al2O3 shows a higher catalytic activity, which depends on the CuO loading amount and calcination temperature. The surface area and number of basic sites of the catalyst exhibit a crucial effect on the catalytic activity of CuO/Al2O3. Furthermore, there is a synergistic effect between the catalyst and 2-cyanopyridine where the former has a higher activation ability for glycerol and the latter acts not only as a dehydrant, but also as a promoter for CO2 activation. Recycling experiments reveal that this catalyst can be reused for at least five cycles without any inactivation. Based on the experiment results and FTIR characterization, a possible reaction mechanism for the carbonylation of glycerol and CO2 is proposed.
Collapse
Affiliation(s)
- Jassim Mohamed Hamed Al-Kurdhani
- Hubei Key Laboratory of Material Chemistry & Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huajun Wang
- Hubei Key Laboratory of Material Chemistry & Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Swamy A, Kanakikodi KS, Bakuru VR, Kulkarni BB, Maradur SP, Kalidindi SB. Continuous Flow Liquid‐Phase Semihydrogenation of Phenylacetylene over Pd Nanoparticles Supported on UiO‐66(Hf) Metal‐Organic Framework. ChemistrySelect 2023. [DOI: 10.1002/slct.202203926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Akkenapally Swamy
- Department of Chemistry School of Chemistry Andhra University Visakhapatnam India- 530003
| | - Kempanna S. Kanakikodi
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
- Graduate studies Manipal Academy of Higher Education Manipal 576104, Karnataka India
| | - Vasudeva Rao Bakuru
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Bhavana B. Kulkarni
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Sanjeev P. Maradur
- Materials Science & Catalysis Division Poornaprajna Institute of Scientific Research (PPISR) Bidalur Post, Devanahalli Bangalore 562164, Karnataka State India
| | - Suresh Babu Kalidindi
- Department of Chemistry School of Chemistry Andhra University Visakhapatnam India- 530003
- Central Tribal University of Andhra Pradesh AU PG Centre, Kondakarakam Village Cantonment Area Vizianagaram (AP) 535003 INDIA
| |
Collapse
|
6
|
Julião D, Mirante F, Balula SS. Easy and Fast Production of Solketal from Glycerol Acetalization via Heteropolyacids. Molecules 2022; 27:molecules27196573. [PMID: 36235109 PMCID: PMC9572551 DOI: 10.3390/molecules27196573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
This work presents an effective and fast procedure to valorize the main waste produced from the biodiesel industry, i.e., the glycerol. The acetalization of glycerol with acetone represents an effective strategy to produce the valuable solketal, a fuel additive component. In this work, the catalytic efficiency of different commercial heteropolyacids (HPAas) was compared under a solvent-free system. The HPAs used were H3[PW12O40] (PW12), H3[PMo12O40] (PMo12) and H4[SiW12O40] (SiW12). The influence of reactional parameters such as reactants stoichiometry, catalyst concentration and reaction temperature were investigated in order to optimize experimental conditions to increase cost-efficiency and sustainability. HPAs demonstrated to be highly efficient for this type of reaction, presenting a high and fast glycerol conversion, with high selectivity to solketal under sustainable conditions (solvent-free system and room temperature medium). The activity of HPAs using 3% to glycerol weight and a glycerol/acetone ratio of 1:15 followed the order: PW12 (99.2%) > PMo12 (91.4%) > SiW12 (90.7%) as a result of the strong acidic sites after 5 min. In fact, only 5 min of reaction were needed to achieve 97% of solketal product in the presence of the PW12 as a catalyst. This last system presents an effective, selective and sustainable catalytic system to valorize glycerol.
Collapse
|
7
|
Abstract
The exponential rise of the biodiesel production has resulted in a considerable amount of glycerol as a by-product, which must be valorized to ensure the sector’s long-term viability. As a result, cost-effective glycerol conversions for significant value-added chemicals are essential for the biodiesel production in the long run. Solketal, a glycerol by-product, is obtained as a potential fuel additive in the biodiesel industry. Recently, several heterogeneous acid-catalysts stand out as a promising catalyst for solketal production where biomass-based catalyst gained attraction owing to their biodegradability, eco-friendly, and abundant availability. Furthermore, magnetic nanoparticles-derived catalysts along with sulfonated functionalized catalyzed, zeolites, resins, enzymatic, etc. have proved their efficiency in solketal production. In this review, a wider study on the recent advances of the catalysts has been discussed along with their preparation, various reaction parameters, its application, and efficiency for biodiesel industry. This study opens up incredible prospects for us to use renewable energy sources, which will benefit the industry, the environment, and the economy.
Collapse
|
8
|
Abstract
The growing global demand for renewable energy sources can be reached using biofuels such as biodiesel, for example. The most used route to produce biodiesel is the transesterification reaction of oils or fats with short-chain alcohols, generating fatty acid esters (biodiesel) and a very important by-product, glycerol (Gly). Gly is widely used in different sectors of the industry, and in order to add value to this by-product, heterogeneous catalysis becomes a relevant tool, whether to transform glycerol into other chemical products of interest or even use it in the production of catalysts. Among the several studies found in the literature, the use of low-cost materials and/or wastes from the most diverse activities to prepare active catalytic materials for the transformation of Gly has been increasingly reported due to its valuable advantages, especially related to the cost of raw materials and environmental aspects. Thus, this brief review article presents the relationship between catalysis, low-cost materials, waste, and glycerol, through different studies that show glycerol being transformed through reactions catalyzed by materials produced from low-cost sources/waste or with the glycerol itself used as a catalyst.
Collapse
|
9
|
Li X, Lai J, Cong H, Shu C, Zhao R, Wang Y, Li H, Gao X. Toward sustainable and eco-efficient novel catalytic distillation process for production of solketal using seepage catalytic packing internal. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Abstract
The rapid increase in anthropogenic greenhouse gas concentrations in the last several decades means that the effects of climate change are fast becoming the familiar horsemen of a planetary apocalypse. Catalysis, one of the pillars of the chemical and petrochemical industries, will play a critical role in the effort to reduce the flow of greenhouse gases into the atmosphere. This Special Issue is timely, as it provides a collection of high-quality manuscripts in a diverse range of topics, which include the production of green hydrogen via water electrolysis, the steam reforming of ethanol, propane or glycerol, the dry reforming of methane, and the autothermal reforming of diesel surrogate fuel. The topic of the transformation of biomass waste to chemicals is also well represented as is the tackling of CO2 emissions via novel utilization technologies. The Editors are grateful to all authors for their valuable contributions and confident that this Special Issue will prove valuable to scholars, university professors and students alike.
Collapse
|
11
|
Liu Y, Li X, Cong H, Li H, Gao X. Experimental Investigation, Process Design, and Optimization Analysis on the Production of Solketal in the Reactive Dividing Wall Column. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingbin Liu
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| | - Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| | - Haifeng Cong
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| | - Hong Li
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| | - Xin Gao
- School of Chemical Engineering and Technology, Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300350, China
| |
Collapse
|
12
|
|
13
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
14
|
Green Production of Glycerol Ketals with a Clay-Based Heterogeneous Acid Catalyst. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glycerol remains a bottleneck for the biodiesel industry as well as an opportunity from the biorefinery perspective, having a notable reactivity as a platform chemical. In particular, glycerol ketals can be envisaged as oxygenates for fuel formulation. In this study, we have focused on the green synthesis of glycerol ketals by reacting glycerol with acyclic (acetone, butanone) and cyclic (cyclohexanone) ketones in the presence of an acid activated clay Tunisian AC in homogeneous systems under quasi-solventless conditions. These reactions were followed by on-line Fourier Transform Infrared Spectroscopy (FTIR) (namely, ReactIR 10). Firstly, the contacting time was selected studying the activity, stability and chemical characteristics of a set of catalysts. The 1-h activated clay AC was further characterized by X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electronic Microscopy with Energy Dispersive Spectroscopy (SEM/EDS). Finally, the effect of the main operational variables (catalyst concentration, reagents molar ratio, time and temperature) were checked and we reflected on adequate second-order kinetic models with partial first-order deactivation.
Collapse
|