1
|
Gioria R, Selleri T, Giechaskiel B, Franzetti J, Ferrarese C, Melas A, Forloni F, Suarez-Bertoa R, Perujo A. Regulated and unregulated emissions from Euro VI Diesel and CNG heavy-duty vehicles. TRANSPORTATION RESEARCH. PART D, TRANSPORT AND ENVIRONMENT 2024; 134:104349. [PMID: 39228820 PMCID: PMC11367066 DOI: 10.1016/j.trd.2024.104349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/10/2024] [Accepted: 07/27/2024] [Indexed: 09/05/2024]
Abstract
This study compares emissions from Euro VI-D Diesel and CNG buses across temperatures from -7 °C to 35 °C. Pollutants including NOx, THC, CH4, CO, NH3, N2O, HCHO, Solid Particle Number larger than 23 nm (SPN23) and larger than 10 nm (SPN10) were measured. Both buses complied with Euro VI-D but exceeded European Commission's proposed Euro 7 limits, notably for NOx and SPN10. The CNG bus also surpassed NH3, CO, and CH4 limits, while the Diesel exceeded N2O limits. High NH3 emissions were observed from CNG (up to 0.320 g/kWh), with Diesel reporting lower levels (up to 0.021 g/kWh). HCHO emission from both vehicles were very low. SPN23 was under limits, but SPN10 exceeded Euro 7 limits at cold start tests. CNG's CH4 and N2O emissions constituted up to 4.6% and 3.5% of CO2 equivalent, respectively. Diesel bus showed negligible CH4 but N2O emissions represented up to 37% of CO2 equivalent.
Collapse
Affiliation(s)
- Roberto Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Tommaso Selleri
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
- European Environment Agency (EEA), 1050 Copenhagen, Denmark
| | | | - Jacopo Franzetti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
- ETSI Minas y Energía, Universidad Politécnica de Madrid, Paseo Juan XXIII 11, Madrid, Spain
| | - Christian Ferrarese
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
- ETSI Minas y Energía, Universidad Politécnica de Madrid, Paseo Juan XXIII 11, Madrid, Spain
| | - Anastasios Melas
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Fabrizio Forloni
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | - Adolfo Perujo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| |
Collapse
|
2
|
Maricq MM. Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161225. [PMID: 36596425 DOI: 10.1016/j.scitotenv.2022.161225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Spark ignition gasoline vehicles comprise most light duty vehicles worldwide. These vehicles were not historically associated with PM emissions. This changed about 15 years ago when emissions regulations forced diesel engines to employ exhaust particulate filters and fuel economy requirements ushered in gasoline direct injection (GDI) technology. These shifts reversed the roles of gasoline and diesel vehicles, with GDI vehicles now regarded as the high PM emitters. Regulators worldwide responded with new or revised PM emissions standards. This review takes a comprehensive look at PM emissions from gasoline vehicles. It examines the technological advances that made it possible for GDI vehicles to meet even the most stringent tailpipe PM standards. These include fuel injection strategies and injector designs to limit fuel films in the engine cylinder that were pathways for soot formation and the development of gasoline particle filters to remove PM from engine exhaust. The review also examines non-exhaust PM emissions from brake, tire, and road wear, which have become the dominant sources of vehicle derived PM. Understanding the low levels of GDI tailpipe PM emissions that have been achieved and its contribution to total vehicle PM emissions is essential for the current debate about the future of internal combustion engines versus rapidly evolving battery electric vehicles. In this context, it does not make sense to consider BEVs as zero emitting vehicles. Rather, a more holistic framework is needed to compare the relative merits of various vehicle powertrains.
Collapse
|
3
|
Analysis of Unregulated VOCs Downstream a Three-Way Catalyst in a Simulated Gasoline Engine Exhaust under Non-Optimum Conditions. Catalysts 2023. [DOI: 10.3390/catal13030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Urban air pollution is partly due to exhaust emissions from road transport. Vehicle emissions have been regulated for more than 30 years in many countries around the world. Each motor type is equipped with a specific emission control system. In gasoline vehicles, a three-way catalytic converter (TWC) is implemented to remove at the same time hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). However, TWCs are only efficient above 200 °C and at a stoichiometric air-to-fuel ratio in the exhaust. However, deviations from stoichiometry occur during fast accelerations and decelerations. This study reports the analysis of unregulated VOCs commercial mini-TWC fed by model gasoline gas mixtures. A synthetic gas bench was used to control the model exhaust containing two model hydrocarbons (propene and propane) to identify the conditions at which VOCs are created under non-optimal conditions. Most of the pollutants such as N2O and VOCs were emitted between 220 and 500 °C with a peak at around 280 °C, temperature which corresponds to the tipping point of the TWC activity. The combination of different mass spectrometric analysis (online and offline) allowed to identify many different VOCs: carbonated (acetone, acetaldehyde, acroleine), nitrile (acetonitrile, propanenitrile, acrylonitrile, cyanopropene) and aromatic (benzene, toluene) compounds. Growth mechanisms from propene and to a lesser extend propane are responsible for the formation of these higher aromatic compounds that could lead to the formation of secondary organic aerosol in a near-field area.
Collapse
|
4
|
Hata H, Okada M, Yanai K, Kugata M, Hoshi J. Exhaust emissions from gasoline vehicles after parking events evaluated by chassis dynamometer experiment and chemical kinetic model of three-way catalytic converter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157578. [PMID: 35882335 DOI: 10.1016/j.scitotenv.2022.157578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Despite the worldwide trend of introducing of zero-fuel-based vehicles to the market, the emissions of air pollutants and greenhouse gases from passenger vehicles are likely to remain a concern for the coming 20 to 30 years. In this study, exhaust emissions of gasoline engines running after varying parking durations were measured using a chassis dynamometer. The experimental results showed that exhaust emissions of hydrocarbons, nitrogen oxides, and carbon monoxide from most vehicles increased dramatically following 60 to 120 min of parking, and were higher than cold-start (1040 + min parking) emissions, indicating the impact of parking duration on atmospheric pollutant emissions. The after-treatment capacity of the three-way catalytic converter was evaluated by chemical kinetic modeling of the chemical reactions on the catalyst coupled with a time-dependent energy conservation equation. The results of the model calculation indicated that both the initial temperature of the three-way catalytic converter and the inlet engine gas temperature are critical factors impacting exhaust pollutants after parking; therefore, proper management to reduce the emissions after middle-term parking durations should be developed to mitigate air pollution.
Collapse
Affiliation(s)
- Hiroo Hata
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan.
| | - Megumi Okada
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Koichi Yanai
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Masahiko Kugata
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5, Sinsuna, Koto-ku, Tokyo 136-0075, Japan.
| |
Collapse
|
5
|
Abstract
Ammonia (NH3) plays a key role in atmospheric chemistry and largely contributes to the PM2.5 measured in urban areas around the globe. For that reason, the National Emission Ceilings directive, Gothenburg Protocol under the United Nations Convention on Long-Range Transboundary Air Pollution, and International Panel for Climate Change (IPCC) directive required a reduction of the emissions of NH3. Nonetheless, the European Environment Agency (EEA) indicated that road transport emissions of NH3 have increased. Moreover, recent studies reported that, not only vehicle NH3 emissions are greater than agricultural emissions in areas that gather > 40% of the U.S. population, but urban emissions of NH3 for passenger cars are underestimated by a factor of 17 in UK. In this study, fifteen gasoline-fuelled vehicles, meeting the most recent European emission standards, Euro 6d or Euro 6d-TEMP, were investigated in laboratory tests over the type-approval worldwide-harmonized light-duty vehicles test cycle (WLTC), at 23 °C and −7 °C, as well as over the motorway cycle Bundesautobahn (BAB). Results show that all the vehicles tested emitted NH3 over the different duty cycles, and presented emissions level that are comparable to those previously reported for Euro 4–Euro 6b vehicles. Finally, good agreement between the CO and the NH3 emissions was registered during the acceleration events, and, in general, a fair correlation, with R2 > 0.75, was obtained, when comparing the CO and NH3 emissions of the studied vehicles.
Collapse
|
6
|
Investigating Particulate and Nitrogen Oxides Emissions of a Plug-In Hybrid Electric Vehicle for a Real-World Driving Scenario. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031404] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plug-in hybrid electric vehicles (PHEVs) show a high pollutant emission variability that strongly depends on the operating conditions of the internal combustion engine. Additionally, studies indicate that driving situations outside of the real driving emissions boundary conditions can lead to substantial pollutant emission increases. The objective of this study is to measure and analyze the particulate number (PN) and nitrogen oxides (NOx) emissions of a Euro 6 PHEV for a selected real-world driving test route in the Stuttgart metropolitan area. For this purpose, the vehicle is set out with multiple measurement devices to monitor vehicle internal and external parameters. Particle distribution results show an overall uniform pattern, which allows a comparative analysis of the different test scenarios on the basis of the PN concentration. While the trip-average PN emissions are in good agreement, transient effects during highway driving can substantially increase emissions, whereas the fuel consumption does not necessarily increase in such situations. PN measurements including ultrafine particles (UFP) show a significant increase in urban emissions due to higher cold start emission peaks. Additionally, low ambient temperatures raise the uncertainty of NOx and PN cold start emissions. With regard to future emission regulations, which claim that vehicles need to be as clean as possible in all driving situations, PHEV emission investigations for further situations outside of the current legislations are required.
Collapse
|
7
|
Sisani F, Di Maria F, Cesari D. Environmental and human health impact of different powertrain passenger cars in a life cycle perspective. A focus on health risk and oxidative potential of particulate matter components. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150171. [PMID: 34537714 DOI: 10.1016/j.scitotenv.2021.150171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Different powertrains passenger cars, homologate in compliance with Euro 6 standard, were compared in a life cycle perspective for assessing both environmental and human health impacts. For this latter aspect, some correlation between the emission of heavy metals, elemental carbon, organic carbon, the oxidative potential of particulate matter and the adverse effect on human health were also analyzed and discussed. Battery electric vehicle (BEV) showed the lower greenhouse gases emissions, from 0.1 kgCO2eq/km to 0.2 kgCO2eq/km but were charged by the higher emissions of freshwater eutrophication and freshwater ecotoxicity, about 6 × 10-6 kgPeq/km and 4 CTUe/km, respectively. Lower resource depletion was detected for cars powered by internal combustion and hybrid powertrains. Amount of particulate matter (PM) emitted resulted lower for petrol-hybrid electric vehicles (Petrol-HEV), of about 5 × 10-5 kgPM2.5eq/km. BEV were charged by the higher values of human toxicity cancer, from about 2 × 10-5 CTUh/km to about 5 × 10-5 CTUh/km whereas Petrol-HEV were credited by the lower impact on human health (DALY/km). The large contribution to PM emission from all the analyzed cars was from tyre and brake wear. Main PM components were elemental (ElC) and organic carbon (OC) compounds. ElC is also a specific marker of PM emitted from traffic. Both ElC and OC were characterized by a strong correlation with the oxidative potential of PM, indicating a threat for human respiratory tract only marginally decreased by the transition from conventional to electric poweretrains vehicles.
Collapse
Affiliation(s)
- Federico Sisani
- Laboratorio LAR(5), Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| | - Francesco Di Maria
- Laboratorio LAR(5), Dipartimento di Ingegneria, Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy.
| | - Daniela Cesari
- Consiglio Nazionale delle Ricerche, Istituto di Scienza dell'Atmosfera e del Clima, S.P Lecce-Monteroni km 1,2, Lecce, Italy
| |
Collapse
|
8
|
Abstract
The emission limit of non-volatile particles (i.e., particles that do not evaporate at 350 °C) with size >23 nm, in combination with the real driving emissions (RDE) regulation in 2017, resulted in the introduction of gasoline particulate filters (GPFs) in all light-duty vehicles with gasoline direct injection engines in Europe. Even though there are studies that have examined the particulate emissions at or beyond the current RDE boundary conditions, there is a lack of studies combining most or all worst cases (i.e., conditions that increase the emissions). In this study, we challenged a fresh (i.e., no accumulation of soot or ash) “advanced” prototype GPF at different temperatures (down to −9 °C), aggressive drive cycles and hard accelerations (beyond the RDE limits), high payload (up to 90%), use of all auxiliaries (air conditioning, heating of the seats and the rear window), and cold starts independently or simultaneously. Under hot engine conditions, the increase of the particulate emissions due to higher payload and lower ambient temperature was 30–90%. The cold start at low ambient temperature, however, had an effect on the emissions of up to a factor of 20 for particles >23 nm or 300 when considering particles <23 nm. We proposed that the reason for these high emissions was the incomplete combustion and the low efficiency of the three-way oxidation catalyst. This resulted in a high concentration of species that were in the gaseous phase at the high temperature of the close-coupled GPF and thus could not be filtered by the GPF. As the exhaust gas cooled down, these precursor species formed particles that could not be evaporated at 350 °C (the temperature of the particle number system). These results highlight the importance of the proper calibration of the engine out emissions at all conditions, even when a GPF is installed.
Collapse
|
9
|
Catalytic Diesel and Gasoline Particulate Filters. Catalysts 2021. [DOI: 10.3390/catal11091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
I am honored to be the Guest Editor of this Special Issue of the journal Catalysts dedicated to “Catalytic Diesel and Gasoline Particulate Filters” [...]
Collapse
|
10
|
Fourier Transform Infrared (FTIR) Spectroscopy for Measurements of Vehicle Exhaust Emissions: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11167416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pollution from vehicles is a serious concern for the environment and human health. Vehicle emission regulations worldwide have limits for pollutants such as hydrocarbons, CO, and NOx. The measurements are typically conducted at engine dynamometers (heavy-duty engines) sampling from the tailpipe or at chassis dynamometers (light-duty vehicles) sampling from the dilution tunnel. The latest regulations focused on the actual emissions of the vehicles on the road. Greenhouse gases (GHG) (such as CO2, CH4, N2O), and NH3 have also been the subject of some regulations. One instrument that can measure many gaseous compounds simultaneously is the Fourier transform infrared (FTIR) spectrometer. In this review the studies that assessed FTIRs since the 1980s are summarized. Studies with calibration gases or vehicle exhaust gas in comparison with well-established techniques were included. The main conclusion is that FTIRs, even when used at the tailpipe and not at the dilution tunnel, provide comparable results with other well-established techniques for CO2, CO, NOx, while for hydrocarbons, higher deviations were noticed. The introduction of FTIRs in the regulation needs a careful description of the technical requirements, especially interference tests. Although the limited results of prototype portable FTIRs for on-road measurement are promising, their performance at the wide range of environmental conditions (temperature, pressure, vibrations) needs further studies.
Collapse
|
11
|
Real Driving Emission Calibration—Review of Current Validation Methods against the Background of Future Emission Legislation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reducing air pollution caused by emissions from road traffic, especially in urban areas, is an important goal of legislators and the automotive industry. The introduction of so-called “Real Driving Emission” (RDE) tests for the homologation of vehicles with internal combustion engines according to the EU6d legislation was a fundamental milestone for vehicle and powertrain development. Due to the introduction of non-reproducible on-road emission tests with “Portable Emission Measurement Systems” (PEMS) in addition to the standardized emission tests on chassis dynamometers, emission aftertreatment development and validation has become significantly more complex. For explicit proof of compliance with the emission and fuel consumption regulations, the legislators continue to require the “Worldwide Harmonized Light Duty Vehicle Test Cycle” (WLTC) on a chassis dynamometer. For calibration purposes, also various RDE profiles are conducted on the chassis dynamometer. However, the combination of precisely defined driving profiles on the chassis dynamometer and the dynamics-limiting boundary conditions in PEMS tests on the road still lead to discrepancies between the certified test results and the real vehicle behavior. The expected future emissions standards to replace EU6d will therefore force even more realistic RDE tests. This is to be achieved by significantly extending the permissible RDE test boundary conditions, such as giving more weight to the urban section of an RDE test. In addition, the introduction of limit values for previously unregulated pollutants such as nitrogen dioxide (NO2), nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) is being considered. Furthermore, the particle number (for diameters of solid particles > 10 nm: PN10), the methane (CH4) emissions and emissions of non-methane organic gases (NMOG) shall be limited and must be tested. To simplify the test procedure in the long term, the abandonment of predefined chassis dyno emission tests to determine the pollutant emission behavior is under discussion. Against this background, current testing, validation, and development methods are reviewed in this paper. New challenges and necessary adaptations of current approaches are discussed and presented to illustrate the need to consider future regulatory requirements in today’s approaches. Conclusions are drawn and suggestions for a robust RDE validation procedure are formulated.
Collapse
|
12
|
Particle Number Emissions of a Euro 6d-Temp Gasoline Vehicle under Extreme Temperatures and Driving Conditions. Catalysts 2021. [DOI: 10.3390/catal11050607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With the introduction of gasoline particulate filters (GPFs), the particle number (PN) emissions of gasoline direct-injection (GDI) vehicles are below the European regulatory limit of 6 × 1011 p/km under certification conditions. Nevertheless, concerns have been raised regarding emission levels at the boundaries of ambient and driving conditions of the real-driving emissions (RDE) regulation. A Euro 6d-Temp GDI vehicle with a GPF was tested on the road and in the laboratory with cycles simulating congested urban traffic, dynamic driving, and towing a trailer uphill at 85% of maximum payload. The ambient temperatures covered a range from −30 to 50 °C. The solid PN emissions were 10 times lower than the PN limit under most conditions and temperatures. Only dynamic driving that regenerated the filter passively, and for the next cycle resulted in relatively high emissions although they were still below the limit. The results of this study confirmed the effectiveness of GPFs in controlling PN emissions under a wide range of conditions.
Collapse
|
13
|
Comparisons of Laboratory and On-Road Type-Approval Cycles with Idling Emissions. Implications for Periodical Technical Inspection (PTI) Sensors. SENSORS 2020; 20:s20205790. [PMID: 33066196 PMCID: PMC7602039 DOI: 10.3390/s20205790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
For the type approval of compression ignition (diesel) and gasoline direct injection vehicles, a particle number (PN) limit of 6 × 1011 p/km is applicable. Diesel vehicles in circulation need to pass a periodical technical inspection (PTI) test, typically every two years, after the first four years of circulation. However, often the applicable smoke tests or on-board diagnostic (OBD) fault checks cannot identify malfunctions of the diesel particulate filters (DPFs). There are also serious concerns that a few high emitters are responsible for the majority of the emissions. For these reasons, a new PTI procedure at idle run with PN systems is under investigation. The correlations between type approval cycles and idle emissions are limited, especially for positive (spark) ignition vehicles. In this study the type approval PN emissions of 32 compression ignition and 56 spark ignition vehicles were compared to their idle PN concentrations from laboratory and on-road tests. The results confirmed that the idle test is applicable for diesel vehicles. The scatter for the spark ignition vehicles was much larger. Nevertheless, the proposed limit for diesel vehicles was also shown to be applicable for these vehicles. The technical specifications of the PTI sensors based on these findings were also discussed.
Collapse
|
14
|
Giechaskiel B, Lähde T, Gandi S, Keller S, Kreutziger P, Mamakos A. Assessment of 10-nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3878. [PMID: 32486197 PMCID: PMC7312886 DOI: 10.3390/ijerph17113878] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022]
Abstract
The particle number (PN) emissions of vehicles equipped with particulate filters are low. However, there are technologies that can have high PN levels, especially below the currently lower regulated particle size of 23 nm. Sub-23-nm particles are also considered at least as dangerous as the larger ultrafine particles. For this reason, the European Union (EU) is planning to regulate particles down to 10 nm. In this study we compared prototype portable emission measurement systems (PEMS) and reference laboratory systems measuring from 10 nm. The tests included cycles and constant speeds, using vehicles fuelled with diesel, gasoline or liquefied petroleum gas (LPG). The results showed that the PEMS were within ±40% of the reference systems connected to the tailpipe and the dilution tunnel. Based on the positive findings and the detection efficiencies of the prototype instruments, a proposal for the technical specifications for the future regulation was drafted.
Collapse
Affiliation(s)
| | - Tero Lähde
- European Commission, Joint Research Centre (JRC), 21027 Ispra (VA), Italy;
| | - Sawan Gandi
- Sensors Europe GmbH, 40699 Erkrath, Germany;
| | | | | | | |
Collapse
|
15
|
Regulated and Non-Regulated Emissions from Euro 6 Diesel, Gasoline and CNG Vehicles under Real-World Driving Conditions. ATMOSPHERE 2020. [DOI: 10.3390/atmos11020204] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transport sector is one of the main sources air pollutants. Different exhaust after-treatment systems have been implemented over the years to control the emissions of criteria pollutants. However, while reducing the emissions of the target compounds these systems can lead to the emissions of other pollutants and/or greenhouse gases such as NH3 or N2O. Following the implementation of the Real Driving Emissions (RDE) test procedure in the EU, vehicles have been equipped with more complex after-treatment configurations. The impact that these technologies may have on the emissions of non-regulated pollutants during real-world driving have not been evaluated until now. In the current study we present the on-road emissions of a series of non-regulated pollutants, including NH3, N2O, CH4 and HCHO, measured with a portable FTIR from a series of Euro 6d, Euro 6c and Euro 6d-TEMP, gasoline diesel and compressed natural gas (CNG) vehicles during real-world testing. The obtained results show that it is possible to measure N2O, NH3, CH4 and HCHO during on-road operation. The results also highlight the importance of the measurement of the emissions of these pollutants during real-world driving, as the emissions of NH3 (a particulate matter precursor) and those of N2O and CH4 (green-house gases) can be high from some vehicle technologies. NH3 emissions were up to 49 mg/km for gasoline passenger cars, up to 69 mg/km for the CNG light-commercial vehicle and up to 17 mg/km a diesel passenger car equipped with a selective catalytic reduction system (SCR). On the other hand, N2O and CH4 emissions accounted for up to 9.8 g CO2 eqv/km for a diesel passenger car equipped with a combination of diesel oxidation catalysts (DOC), lean NOx traps (LNT), SCR and possibly an ammonia slip catalyst ASC.
Collapse
|
16
|
Giechaskiel B, Bonnel P, Perujo A, Dilara P. Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234819. [PMID: 31801216 PMCID: PMC6926649 DOI: 10.3390/ijerph16234819] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022]
Abstract
Portable emissions measurement systems (PEMS) for gaseous pollutants were firstly introduced in the United States regulation to check the in-use compliance of heavy-duty engines, avoiding the high costs of removing the engine and testing it on a dynamometer in the laboratory. In Europe, the in-service conformity of heavy-duty engines has been checked with PEMS for gaseous pollutants since 2014. To strengthen emissions regulations with a view to minimise the differences between on-road and laboratory emission levels in some cases, PEMS testing, including solid particle number (SPN), was introduced for the type-approval of light-duty vehicles in Europe in 2017 and for in-service conformity in 2019. SPN-PEMS for heavy-duty engines will be introduced in 2021. This paper gives an overview of the studies for SPN-PEMS from early 2013 with the first prototypes until the latest testing and improvements in 2019. The first prototype diffusion charger (DC) based systems had high differences from the reference laboratory systems at the first light-duty vehicles campaign. Tightening of the technical requirements and improvements from the instrument manufacturers resulted in differences of around 50%. Similar differences were found in an inter-laboratory comparison exercise with the best performing DC- and CPC- (condensation particle counter) based system. The heavy-duty evaluation phase at a single lab and later at various European laboratories revealed higher differences due to the small size of the urea generated particles and their high charge at elevated temperatures. This issue, along with robustness at low ambient temperatures, was addressed by the instrument manufacturers bringing the measurement uncertainty to the 50% levels. This measurement uncertainty needs to be considered at the on-road emission results measured with PEMS.
Collapse
Affiliation(s)
- Barouch Giechaskiel
- European Commission, Joint Research Centre, 21027 Ispra, Italy; (P.B.); (A.P.)
- Correspondence: ; Tel.: +39-0332-785312
| | - Pierre Bonnel
- European Commission, Joint Research Centre, 21027 Ispra, Italy; (P.B.); (A.P.)
| | - Adolfo Perujo
- European Commission, Joint Research Centre, 21027 Ispra, Italy; (P.B.); (A.P.)
| | | |
Collapse
|