1
|
Kim SH, Han RT, Han HS, Kim YM. Immune-modulative nano-gel-nano system for patient-favorable cancer therapy. Bioact Mater 2025; 43:67-81. [PMID: 39328776 PMCID: PMC11424977 DOI: 10.1016/j.bioactmat.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Current cancer immunotherapies exhibit low response rates attributed to suppressive tumor immune microenvironments (TIMEs). To address these unfavorable TIMEs, supplementation with tumor-associated antigens and stimulation of immune cells at target sites are indispensable for eliciting anti-tumoral immune responses. Previous research has explored the induction of immunotherapy through multiple injections and implants; however, these approaches lack consideration for patient convenience and the implementation of finely tunable immune response control systems to mitigate the side effects of over-inflammatory responses, such as cytokine storms. In this context, we describe a patient-centric nano-gel-nano system capable of sustained generation of tumor-associated antigens and release of adjuvants. This is achieved through the specific delivery of drugs to cancer cells and antigens/adjuvants to immune cells over the long term, maintaining proper concentrations within the tumor site with a single injection. This system demonstrates local immunity against tumors with a single injection, enhances the therapeutic efficacy of immune checkpoint blockades, and induces systemic and memory T cell responses, thus minimizing systemic side effects.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Rafael T Han
- Chemical and Biomedical Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young-Min Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Yang S, Liu S, Dai Z. Tenuigenin inhibits osteosarcoma growth via CIP2A/PP2A/NF-κB axis. Cancer Chemother Pharmacol 2024; 95:15. [PMID: 39739023 DOI: 10.1007/s00280-024-04733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Polygala tenuifolia and its active components have been revealed to possess anti-tumor activities. However, the role of Tenuigenin (TEN), a bioactive ingredient from Polygala tenuifolia, in tumors such as osteosarcoma (OS) remains unclear. The present research intended to explore the efficacy and underlying mechanism of TEN on OS. METHODS OS cells were administrated with different concentrations of TEN. Cell viability, proliferation, invasion, and migration were assessed with CCK-8 assay, colony formation assay, transwell assay, and wound healing assay, respectively. Protein and mRNA levels were determined with western blot and qRT-PCR, while protein phosphatase 2A (PP2A) activity was tested with PP2A phosphatase assay kit. The interaction between PP2A and cancerous inhibitor of protein phosphatase 2A (CIP2A) or nuclear factor kappaB (NF-κB) signaling was detected using co-immunoprecipitation. p-p65 expression in the nucleus was determined with immunofluorescence. The efficacy of TEN in vivo was also explored in a xenograft tumor model. Immunohistochemistry was performed to detect CIP2A and Ki67 in mice. RESULTS TEN treatment or CIP2A depletion repressed cell viability, proliferation, invasion, and migration in OS cells. Additionally, TEN reduced CIP2A, increased PP2A activity, and inactivated NF-κB signaling. PP2A directly interacted with CIP2A or NF-κB signaling, and PP2A inhibition reversed CIP2A knockdown-induced repression of NF-κB signaling. CIP2A overexpression overturned the efficacy of TEN, which was reversed by NF-κB inhibition. TEN decreased CIP2A, elevated PP2A activity, inactivated NF-κB signaling, and inhibited tumor growth in vivo, which was antagonized by CIP2A overexpression. CONCLUSION TEN suppressed OS growth via CIP2A/PP2A/NF-κB axis, indicating that it would be a novel drug for treating OS.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shasha Liu
- Department of Comprehensive Bone and Joint Rehabilitation, Hunan Provincial Rehabilitation Hospital, Changsha, 410007, Hunan Province, People's Republic of China
| | - Zixun Dai
- Department of Orthopedics & Soft Tissue, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
3
|
Yang Y, Liu N, Gong L. An overview of the functions and mechanisms of APOBEC3A in tumorigenesis. Acta Pharm Sin B 2024; 14:4637-4648. [PMID: 39664421 PMCID: PMC11628810 DOI: 10.1016/j.apsb.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 12/13/2024] Open
Abstract
The APOBEC3 (A3) family plays a pivotal role in the immune system by performing DNA/RNA single-strand deamination. Cancers mostly arise from the accumulation of chronic mutations in somatic cells, and recent research has highlighted the A3 family as a major contributor to tumor-associated mutations, with A3A being a key driver gene leading to cancer-related mutations. A3A helps to defend the host against virus-induced tumors by editing the genome of cancer-associated viruses that invade the host. However, when it is abnormally expressed, it leads to persistent, chronic mutations in the genome, thereby fueling tumorigenesis. Notably, A3A is prominently expressed in innate immune cells, particularly macrophages, thereby affecting the functional state of tumor-infiltrating immune cells and tumor growth. Furthermore, the expression of A3A in tumor cells may directly affect their proliferation and migration. A growing body of research has unveiled that A3A is closely related to various cancers, which signifies the potential significance of A3A in cancer therapy. This paper mainly classifies and summarizes the evidence of the relationship between A3A and tumorigenesis based on the potential mechanisms, aiming to provide valuable references for further research on the functions of A3A and its development in the area of cancer therapy.
Collapse
Affiliation(s)
- Yuqi Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Abdollahzadeh B, Cantale Aeo NM, Giordano N, Orlando A, Basciani M, Peruzzi G, Grazioli P, Screpanti I, Felli MP, Campese AF. The NF-κB1/p50 Subunit Influences the Notch/IL-6-Driven Expansion of Myeloid-Derived Suppressor Cells in Murine T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2024; 25:9882. [PMID: 39337370 PMCID: PMC11431874 DOI: 10.3390/ijms25189882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
T-cell acute lymphoblastic leukemia is an aggressive neoplasia due to hyper-proliferation of lymphoid progenitors and lacking a definitive cure to date. Notch-activating mutations are the most common in driving disease onset and progression, often in combination with sustained activity of NF-κB. Myeloid-derived suppressor cells represent a mixed population of immature progenitors exerting suppression of anti-cancer immune responses in the tumor microenvironment of many malignancies. We recently reported that in a transgenic murine model of Notch3-dependent T-cell acute lymphoblastic leukemia there is an accumulation of myeloid-derived suppressor cells, dependent on both Notch signaling deregulation and IL-6 production inside tumor T-cells. However, possible interaction between NF-κB and Notch in this context remains unexplored. Interestingly, we also reported that Notch3 transgenic and NF-κB1/p50 deleted double mutant mice display massive myeloproliferation. Here, we demonstrated that the absence of the p50 subunit in these mice dramatically enhances the induction and suppressive function of myeloid-derived suppressor cells. This runs in parallel with an impressive increase in IL-6 concentration in the peripheral blood serum, depending on IL-6 hyper-production by tumor T-cells from double mutant mice. Mechanistically, IL-6 increase relies on loss of the negative control exerted by the p50 subunit on the IL-6 promoter. Our results reveal the Notch/NF-κB cross-talk in regulating myeloid-derived suppressor cell biology in T-cell leukemia, highlighting the need to consider carefully the pleiotropic effects of NF-κB-based therapy on the tumor microenvironment.
Collapse
Affiliation(s)
- Behnaz Abdollahzadeh
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Noemi Martina Cantale Aeo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Nike Giordano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Andrea Orlando
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Basciani
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Giovanna Peruzzi
- Center for Life Nano- and Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy;
| | - Paola Grazioli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Antonio Francesco Campese
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (B.A.); (N.M.C.A.); (N.G.); (A.O.); (M.B.); (P.G.); (I.S.)
| |
Collapse
|
5
|
Chen Z, Wang C, Li M, Cai S, Liu X. SPRED3 regulates the NF-κB signaling pathway in thyroid cancer and promotes the proliferation. Sci Rep 2024; 14:20506. [PMID: 39227612 PMCID: PMC11372091 DOI: 10.1038/s41598-024-61075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/30/2024] [Indexed: 09/05/2024] Open
Abstract
SPRED3 (Sprouty-related EVH1 domain containing 3) mutants are depicted in various cancers, however, nothing is known about its biofunction in thyroid cancer (THCA). Bioinformatic analyses were conducted to ascertain the level of SPRED3 expression in THCA tissues and its importance in the prognosis of THCA patients. Flag-SPRED3 plasmid and SPRED3-knockout vector were developed to overexpress or deplete the SPRED3 expression in THCA cells. The function of SPRED3 on THCA cell proliferation was examined using the colony formation assay and CCK8 assay. The effect of SPRED3 expression on the transcriptional activity of NF-κB was also examined using luciferase reporter assays. High SPRED3 expression was associated with unfavorable clinical outcomes, advanced tumor characteristics, and traditional molecular markers of papillary thyroid cancer in THCA patients. Genetic analysis revealed differences in mutation rates in key genes between SPRED3-high and SPRED3-low THCA cases. It is also revealed that SPRED3 influenced the immune microenvironment, with increased stromal and immune scores and altered immune cell infiltration. Functionally, SPRED3 overexpression enhanced THCA cell viability and colony formation, while its depletion reduced cell growth and proliferation. In vivo experiments in mice confirmed the inhibitory effect of SPRED3 depletion on tumor growth. Mechanically, we found that SPRED3 activated the NF-κB signaling. For the first time, we found that SPRED3 promotes THCA cell proliferation via the NF-κB signaling pathway. This finding may provide insight into SPRED3's prognostic potential in thyroid cancer and provide the rationale for SPRED3-targeted druggable interventions.
Collapse
Affiliation(s)
- Zhiping Chen
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Congren Wang
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Mingzhu Li
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shaoyang Cai
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xiaoyu Liu
- Department of Thyroid Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
6
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Thapa R, Moglad E, Goyal A, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Ali H, Oliver BG, MacLoughlin R, Dureja H, Singh SK, Dua K, Gupta G. Deciphering NF-kappaB pathways in smoking-related lung carcinogenesis. EXCLI JOURNAL 2024; 23:991-1017. [PMID: 39253534 PMCID: PMC11382301 DOI: 10.17179/excli2024-7475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/01/2024] [Indexed: 09/11/2024]
Abstract
One of the main causes of death worldwide is lung cancer, which is largely caused by cigarette smoking. The crucial transcription factor NF-κB, which controls inflammatory responses and various cellular processes, is a constitutively present cytoplasmic protein strictly regulated by inhibitors like IκB proteins. Upon activation by external stimuli, it undergoes phosphorylation, translocates into the nucleus, and modulates the expression of specific genes. The incontrovertible association between pulmonary malignancy and tobacco consumption underscores and highlights a public health concern. Polycyclic aromatic hydrocarbons and nitrosamines, potent carcinogenic compounds present in the aerosol emitted from combusted tobacco, elicit profound deleterious effects upon inhalation, resulting in severe perturbation of pulmonary tissue integrity. The pathogenesis of smoking-induced lung cancer encompasses an intricate process wherein NF-κB activation plays a pivotal role, triggered by exposure to cigarette smoke through diverse signaling pathways, including those associated with oxidative stress and pro-inflammatory cytokines. Unraveling the participation of NF-κB in smoking-induced lung cancer provides pivotal insights into molecular processes, wherein intricate crosstalk between NF-κB and pathways such as MAPK and PI3K-Akt amplifies the inflammatory response, fostering an environment conducive to the formation of lung cancer. This study reviews the critical function of NF-κB in the complex molecular pathways linked to the initiation and advancement of lung carcinogenesis as well as potential treatment targets. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW 2137 Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94 Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77 Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40 Ireland
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Center for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
8
|
Lalle G, Lautraite R, Bouherrou K, Plaschka M, Pignata A, Voisin A, Twardowski J, Perrin-Niquet M, Stéphan P, Durget S, Tonon L, Ardin M, Degletagne C, Viari A, Belgarbi Dutron L, Davoust N, Postler TS, Zhao J, Caux C, Caramel J, Dalle S, Cassier PA, Klein U, Schmidt-Supprian M, Liblau R, Ghosh S, Grinberg-Bleyer Y. NF-κB subunits RelA and c-Rel selectively control CD4+ T cell function in multiple sclerosis and cancer. J Exp Med 2024; 221:e20231348. [PMID: 38563819 PMCID: PMC10986815 DOI: 10.1084/jem.20231348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/30/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
The outcome of cancer and autoimmunity is often dictated by the effector functions of CD4+ conventional T cells (Tconv). Although activation of the NF-κB signaling pathway has long been implicated in Tconv biology, the cell-autonomous roles of the separate NF-κB transcription-factor subunits are unknown. Here, we dissected the contributions of the canonical NF-κB subunits RelA and c-Rel to Tconv function. RelA, rather than c-Rel, regulated Tconv activation and cytokine production at steady-state and was required for polarization toward the TH17 lineage in vitro. Accordingly, RelA-deficient mice were fully protected against neuroinflammation in a model of multiple sclerosis due to defective transition to a pathogenic TH17 gene-expression program. Conversely, Tconv-restricted ablation of c-Rel impaired their function in the microenvironment of transplanted tumors, resulting in enhanced cancer burden. Moreover, Tconv required c-Rel for the response to PD-1-blockade therapy. Our data reveal distinct roles for canonical NF-κB subunits in different disease contexts, paving the way for subunit-targeted immunotherapies.
Collapse
Affiliation(s)
- Guilhem Lalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Lautraite
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Khaled Bouherrou
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Plaschka
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Allison Voisin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Twardowski
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Perrin-Niquet
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Pierre Stéphan
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Durget
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurie Tonon
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Maude Ardin
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyril Degletagne
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alain Viari
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, Gilles Thomas Bioinformatics Platform, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Nathalie Davoust
- Laboratory of Biology and Modelling of the Cell, Ecole Normale Supérieure of Lyon, CNRS UMR 5239, INSERM U1293, Lyon, France
| | - Thomas S. Postler
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jingyao Zhao
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christophe Caux
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Dalle
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe A. Cassier
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Ulf Klein
- Division of Haematology and Immunology, Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, UK
| | - Marc Schmidt-Supprian
- Institute of Experimental Hematology, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UMR INSERM 1291, CNRS 5051, Université Toulouse III, Toulouse, France
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yenkel Grinberg-Bleyer
- Cancer Research Center of Lyon, Labex DEV2CAN, Institut Convergence Plascan, Centre Léon Bérard, UMR INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
9
|
Huang P, Zhao H, Sun R, Liu C, Wu L, Wang Y, Gan Z, Yang X, Du J. MiR-1976/NCAPH/P65 axis inhibits the malignant phenotypes of lung adenocarcinoma. Sci Rep 2024; 14:11211. [PMID: 38755247 PMCID: PMC11099075 DOI: 10.1038/s41598-024-61261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is a malignancy with an abysmal survival rate. High metastasis is the leading cause of the low survival rate of LUAD. NCAPH, an oncogene, is involved in the carcinogenesis of LUAD. However, the regulation of NCAPH in LUAD remains controversial. In this work, we identified an up-regulation of NCAPH in LUAD tissues. Patients who expressed more NCAPH had shorter overall survival (OS). Furthermore, NCAPH overexpression promoted LUAD cell migration while inhibiting apoptosis. MiR-1976 and miR-133b were predicted to target NCAPH expression by searching TargetScan and linkedomics databases. Following that, we confirmed that miR-1976 suppressed NCAPH by directly targeting a 7-bp region of NCAPH 3' untranslated regions (UTR). In addition, increased expression of miR-1976 decreased the proliferation & migration and promoted apoptosis of LUAD cells, and the re-introduction of NCAPH reversed these influences. Furthermore, the xenograft and metastasis mouse models also confirmed that miR-1976 inhibited tumor growth and metastasis in vivo by targeting NCAPH. Finally, we found that MiR-1976 targeting NCAPH blocked the activation of NF-κB. In conclusion, miR-1976 inhibits NCAPH activity in LUAD and acts as a tumor suppressor. The miR-1976/NCAPH/NF-κB axis may, in the future, represent crucial diagnostic and prognostic biomarkers and promising therapeutic options.
Collapse
Affiliation(s)
- Peiluo Huang
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
- College of Pharmacy, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Hongtao Zhao
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Ruonan Sun
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Chunyan Liu
- Central Laboratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Lei Wu
- College of Department of Information & Library Science, Guilin Medical University, Guilin, 541004, China
| | - Yao Wang
- Central Laboratory, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, Shandong, China
| | - Zhengwei Gan
- School of Clinical Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China
| | - Xiuzhen Yang
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Xi Road, Zibo, 255036, China.
| | - Juan Du
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, 541199, Guangxi, China.
| |
Collapse
|
10
|
Wang PS, Liu Z, Sweef O, Saeed AF, Kluz T, Costa M, Shroyer KR, Kondo K, Wang Z, Yang C. Hexavalent chromium exposure activates the non-canonical nuclear factor kappa B pathway to promote immune checkpoint protein programmed death-ligand 1 expression and lung carcinogenesis. Cancer Lett 2024; 589:216827. [PMID: 38527692 PMCID: PMC11375691 DOI: 10.1016/j.canlet.2024.216827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide; however, the mechanism of lung carcinogenesis has not been clearly defined. Chronic exposure to hexavalent chromium [Cr(VI)], a common environmental and occupational pollutant, causes lung cancer, representing an important lung cancer etiology factor. The mechanism of how chronic Cr(VI) exposure causes lung cancer remains largely unknown. By using cell culture and mouse models and bioinformatics analyses of human lung cancer gene expression profiles, this study investigated the mechanism of Cr(VI)-induced lung carcinogenesis. A new mouse model of Cr(VI)-induced lung carcinogenesis was developed as evidenced by the findings showing that a 16-week Cr(VI) exposure (CaCrO4, 100 μg per mouse once per week) via oropharyngeal aspiration induced lung adenocarcinomas in male and female A/J mice, whereas none of the sham-exposed control mice had lung tumors. Mechanistic studies revealed that chronic Cr(VI) exposure activated the non-canonical NFκB pathway through the long non-coding RNA (lncRNA) ABHD11-AS1/deubiquitinase USP15-mediated tumor necrosis factor receptor-associated factor 3 (TRAF3) down-regulation. The non-canonical NFκB pathway activation increased the interleukin 6 (IL-6)/Janus kinase (Jak)/signal transducer and activator of transcription 3 (Stat3) signaling. The activation of the IL-6/Jak signaling axis by Cr(VI) exposure not only promoted inflammation but also stabilized the immune checkpoint molecule programmed death-ligand 1 (PD-L1) protein in the lungs, reducing T lymphocyte infiltration to the lungs. Given the well-recognized critical role of PD-L1 in inhibiting anti-tumor immunity, these findings suggested that the lncRNA ABHD11-AS1-mediated non-canonical NFκB pathway activation and PD-L1 up-regulation may play important roles in Cr(VI)-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Po-Shun Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Zulong Liu
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Abdullah Farhan Saeed
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Thomas Kluz
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environment Medicine, New York University School of Medicine, New York, NY, USA
| | - Kenneth R Shroyer
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City, 770-8509, Japan
| | - Zhishan Wang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Chengfeng Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Meng Z, Cheng S, Wang W, Wei Z, Guo Z, Zhao X, Wu B, Chang H, Wang N. Up-regulation of MIC19 promotes growth and metastasis of hepatocellular carcinoma by activating ROS/NF-κB signaling. Transl Oncol 2024; 42:101906. [PMID: 38350286 PMCID: PMC10876907 DOI: 10.1016/j.tranon.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Mitochondrial malfunction has been well-recognized as a critical step in the pathogenesis of many types of diseases, including cancer. MIC19 is a core a subunit of the MICOS complex that plays a critical role in maintaining the normal function of mitochondria. However, the biological functions of MIC19 in human hepatocellular carcinoma (HCC) remain unclear. METHODS The expression level of MIC19 in HCC was evaluated by bioinformatics analysis, quantitative real-time PCR and immunohistochemistry staining assays. Cell growth and metastasis experiments were used to assess the biological functions of MIC19 in HCC cells. FINDINGS MIC19 expression was frequently upregulated in both human HCC specimens and cell lines, and its upregulation is closely associated with patients' survival. Results from loss-of-function and gain-of-function experiments demonstrated that knockdown of MIC19 significantly attenuated, while overexpression of MIC19 enhanced, the proliferation, colony formation, migration and invasion abilities of HCC cells. Mechanistically, we found that MIC19 has no effect on mitochondrial energy production, while activated ROS/NF-κB signaling, which was required for MIC19-promoted HCC growth and metastasis. INTERPRETATION Our findings suggest that MIC19 play a critical oncogenic role in HCC, implying that MIC19 may serve as a potential therapeutic target in the treatment of HCC.
Collapse
Affiliation(s)
- Zhanbing Meng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Shixia Cheng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Weifang Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhouxia Wei
- Department of General Surgery (part II), LanZhou Second People's Hospital, Lanzhou 730000, China
| | - Zheng Guo
- Department of Burns and Plastic Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China
| | - Xuying Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bing Wu
- Department of Geriatrics, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Hulin Chang
- Department of Hepatobiliary Surgery, Shaanxi Provincial People's Hospital, Xi'an 710061, Shaanxi, China
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an 710038, China.
| |
Collapse
|
12
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
13
|
Wang Y, Sun Y, Deng S, Liu J, Yu J, Chi H, Han X, Zhang Y, Shi J, Wang Y, Quan Y, Li H, Xu J. Discovery of galectin-8 as an LILRB4 ligand driving M-MDSCs defines a class of antibodies to fight solid tumors. Cell Rep Med 2024; 5:101374. [PMID: 38232701 PMCID: PMC10829871 DOI: 10.1016/j.xcrm.2023.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/16/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
LILRB4 is an immunosuppressive receptor, and its targeting drugs are undergoing multiple preclinical and clinical trials. Currently, the absence of a functional LILRB4 ligand in solid tumors not only limits the strategy of early antibody screening but also leads to the lack of companion diagnostic (CDx) criteria, which is critical to the objective response rate in early-stage clinical trials. Here, we show that galectin-8 (Gal-8) is a high-affinity functional ligand of LILRB4, and its ligation induces M-MDSC by activating STAT3 and inhibiting NF-κB. Significantly, Gal-8, but not APOE, can induce MDSC, and both ligands bind LILRB4 noncompetitively. Gal-8 expression promotes in vivo tumor growth in mice, and the knockout of LILRB4 attenuates tumor growth in this context. Antibodies capable of functionally blocking Gal-8 are able to suppress tumor growth in vivo. These results identify Gal-8 as an MDSC-driving ligand of LILRB4, and they redefine a class of antibodies for solid tumors.
Collapse
Affiliation(s)
- Yiting Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yufan Sun
- BioTroy Therapeutics, Shanghai, China
| | - Shouyan Deng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiayang Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jianghong Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hao Chi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Han
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yuan Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawei Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yungang Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | | | - Hai Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
14
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
15
|
Verhoeven J, Jacobs KA, Rizzollo F, Lodi F, Hua Y, Poźniak J, Narayanan Srinivasan A, Houbaert D, Shankar G, More S, Schaaf MB, Dubroja Lakic N, Ganne M, Lamote J, Van Weyenbergh J, Boon L, Bechter O, Bosisio F, Uchiyama Y, Bertrand MJ, Marine JC, Lambrechts D, Bergers G, Agrawal M, Agostinis P. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol Med 2023; 15:e18028. [PMID: 38009521 DOI: 10.15252/emmm.202318028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Tumor endothelial cells (TECs) actively repress inflammatory responses and maintain an immune-excluded tumor phenotype. However, the molecular mechanisms that sustain TEC-mediated immunosuppression remain largely elusive. Here, we show that autophagy ablation in TECs boosts antitumor immunity by supporting infiltration and effector function of T-cells, thereby restricting melanoma growth. In melanoma-bearing mice, loss of TEC autophagy leads to the transcriptional expression of an immunostimulatory/inflammatory TEC phenotype driven by heightened NF-kB and STING signaling. In line, single-cell transcriptomic datasets from melanoma patients disclose an enriched InflammatoryHigh /AutophagyLow TEC phenotype in correlation with clinical responses to immunotherapy, and responders exhibit an increased presence of inflamed vessels interfacing with infiltrating CD8+ T-cells. Mechanistically, STING-dependent immunity in TECs is not critical for the immunomodulatory effects of autophagy ablation, since NF-kB-driven inflammation remains functional in STING/ATG5 double knockout TECs. Hence, our study identifies autophagy as a principal tumor vascular anti-inflammatory mechanism dampening melanoma antitumor immunity.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Rizzollo
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Francesca Lodi
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Yichao Hua
- Laboratory of Tumor Microenvironment and Therapeutic Resistance Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joanna Poźniak
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Adhithya Narayanan Srinivasan
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marco B Schaaf
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolina Dubroja Lakic
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jochen Lamote
- Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KULeuven and UZ Leuven, Leuven, Belgium
- Department of Pathology, UZLeuven, Leuven, Belgium
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mathieu Jm Bertrand
- VIB Center for Inflammation Research, Ghent University, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jean Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Huang S, Wang K, Huang D, Su X, Yang R, Shao C, Jiang J, Wu J. Bisphenol AF Induces Prostatic Dorsal Lobe Hyperplasia in Rats through Activation of the NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:16221. [PMID: 38003411 PMCID: PMC10671145 DOI: 10.3390/ijms242216221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bisphenol AF (BPAF) represents a common environmental estrogenic compound renowned for its capacity to induce endocrine disruptions. Notably, BPAF exhibits an enhanced binding affinity to estrogen receptors, which may have more potent estrogenic activity compared with its precursor bisphenol A (BPA). Notwithstanding, the existing studies on BPAF-induced prostate toxicity remain limited, with related toxicological research residing in the preliminary stage. Our previous studies have confirmed the role of BPAF in the induction of ventral prostatic hyperplasia, but its role in the dorsal lobe is not clear. In this study, BPAF (10, 90 μg/kg) and the inhibitor of nuclear transcription factor-κB (NF-κB), pyrrolidinedithiocarbamate (PDTC, 100 mg/kg), were administered intragastrically in rats for four weeks. Through comprehensive anatomical and pathological observations, as well as the assessment of PCNA over-expression, we asserted that BPAF at lower doses may foster dorsal prostatic hyperplasia in rats. The results of IHC and ELISA indicated that BPAF induced hyperplastic responses in the dorsal lobe of the prostate by interfering with a series of biomarkers in NF-κB signaling pathways, containing NF-κB p65, COX-2, TNF-α, and EGFR. These findings confirm the toxic effect of BPAF on prostate health and emphasize the potential corresponding mechanisms.
Collapse
Affiliation(s)
- Sisi Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Kaiyue Wang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Dongyan Huang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Xin Su
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Rongfu Yang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Congcong Shao
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Juan Jiang
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| | - Jianhui Wu
- Shanghai Engineering Research Center of Reproductive Health Drug and Devices, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China; (S.H.); (K.W.); (D.H.); (X.S.); (R.Y.); (C.S.); (J.J.)
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Pharmacy School, Fudan University, Shanghai 200237, China
| |
Collapse
|
17
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
18
|
Toney NJ, Schlom J, Donahue RN. Phosphoflow cytometry to assess cytokine signaling pathways in peripheral immune cells: potential for inferring immune cell function and treatment response in patients with solid tumors. J Exp Clin Cancer Res 2023; 42:247. [PMID: 37741983 PMCID: PMC10517546 DOI: 10.1186/s13046-023-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/17/2023] [Indexed: 09/25/2023] Open
Abstract
Tumor biopsy is often not available or difficult to obtain in patients with solid tumors. Investigation of the peripheral immune system allows for in-depth and dynamic profiling of patient immune response prior to and over the course of treatment and disease. Phosphoflow cytometry is a flow cytometry‒based method to detect levels of phosphorylated proteins in single cells. This method can be applied to peripheral immune cells to determine responsiveness of signaling pathways in specific immune subsets to cytokine stimulation, improving on simply defining numbers of populations of cells based on cell surface markers. Here, we review studies using phosphoflow cytometry to (a) investigate signaling pathways in cancer patients' peripheral immune cells compared with healthy donors, (b) compare immune cell function in peripheral immune cells with the tumor microenvironment, (c) determine the effects of agents on the immune system, and (d) predict cancer patient response to treatment and outcome. In addition, we explore the use and potential of phosphoflow cytometry in preclinical cancer models. We believe this review is the first to provide a comprehensive summary of how phosphoflow cytometry can be applied in the field of cancer immunology, and demonstrates that this approach holds promise in exploring the mechanisms of response or resistance to immunotherapy both prior to and during the course of treatment. Additionally, it can help identify potential therapeutic avenues that can restore normal immune cell function and improve cancer patient outcome.
Collapse
Affiliation(s)
- Nicole J Toney
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
19
|
Carlsen L, Zhang S, Tian X, De La Cruz A, George A, Arnoff TE, El-Deiry WS. The role of p53 in anti-tumor immunity and response to immunotherapy. Front Mol Biosci 2023; 10:1148389. [PMID: 37602328 PMCID: PMC10434531 DOI: 10.3389/fmolb.2023.1148389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
p53 is a transcription factor that regulates the expression of genes involved in tumor suppression. p53 mutations mediate tumorigenesis and occur in approximately 50% of human cancers. p53 regulates hundreds of target genes that induce various cell fates including apoptosis, cell cycle arrest, and DNA damage repair. p53 also plays an important role in anti-tumor immunity by regulating TRAIL, DR5, TLRs, Fas, PKR, ULBP1/2, and CCL2; T-cell inhibitory ligand PD-L1; pro-inflammatory cytokines; immune cell activation state; and antigen presentation. Genetic alteration of p53 can contribute to immune evasion by influencing immune cell recruitment to the tumor, cytokine secretion in the TME, and inflammatory signaling pathways. In some contexts, p53 mutations increase neoantigen load which improves response to immune checkpoint inhibition. Therapeutic restoration of mutated p53 can restore anti-cancer immune cell infiltration and ameliorate pro-tumor signaling to induce tumor regression. Indeed, there is clinical evidence to suggest that restoring p53 can induce an anti-cancer immune response in immunologically cold tumors. Clinical trials investigating the combination of p53-restoring compounds or p53-based vaccines with immunotherapy have demonstrated anti-tumor immune activation and tumor regression with heterogeneity across cancer type. In this Review, we discuss the impact of wild-type and mutant p53 on the anti-tumor immune response, outline clinical progress as far as activating p53 to induce an immune response across a variety of cancer types, and highlight open questions limiting effective clinical translation.
Collapse
Affiliation(s)
- Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Xiaobing Tian
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Arielle De La Cruz
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Andrew George
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Taylor E. Arnoff
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Legorreta Cancer Center, Brown University, Providence, RI, United States
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Feng X, Shan R, Hu X. The linkage of NF-κB signaling pathway-associated long non-coding RNAs with tumor microenvironment and prognosis in cervical cancer. BMC Med Genomics 2023; 16:169. [PMID: 37461017 PMCID: PMC10351132 DOI: 10.1186/s12920-023-01605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND NF-κB signaling pathway participate closely in regulating inflammation and immune response in many cancers. Long non-coding RNAs (lncRNAs) associated with NF-κB signaling have not been characterized in cervical cancer. This study revealed the linkage between tumor microenvironment and NF-κB signaling-associated lncRNAs in cervical cancer. MATERIALS AND METHODS The expression profiles of cervical cancer samples from The Cancer Genome Atlas (TCGA) database were downloaded. NF-κB signaling-associated lncRNAs were screened as a basis to perform molecular subtyping. Immune cell infiltration was assessed by ESTIMATE, Microenvironment Cell Populations (MCP)-counter and single sample gene set enrichment analysis (ssGSEA). The key NF-κB signaling-associated lncRNAs were identified by univariate analysis, least absolute shrinkage and selection operator, and stepAIC. RESULTS Three molecular subtypes or clusters (cluster 3, cluster 2, and cluster 1) were categorized based on 27 prognostic NF-κB signaling-associated lncRNAs. Cluster 2 had the worst prognosis, highest immune infiltration, as well as the highest expression of most of immune checkpoints. Three clusters showed different sensitivities to immunotherapy and chemotherapy. Six key NF-κB signaling-associated lncRNAs were screened to establish a six-lncRNA risk model for predicting cervical cancer prognosis. CONCLUSIONS NF-κB signaling-associated lncRNAs played an important role in regulating immune microenvironment. The subtyping based on NF-κB signaling-associated lncRNAs may assist in the selection of optimal treatments. The six key NF-κB signaling-associated lncRNAs could act as prognostic biomarkers in prognostic prediction for cervical cancer.
Collapse
Affiliation(s)
- Xue Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150010, China
| | - Ru Shan
- Department of Reproductive Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150010, China
| | - Xiaomeng Hu
- Department of Medical Psychology, Harbin Medical University, Harbin, 150010, China.
| |
Collapse
|
21
|
Fu Y, Zheng P, Zheng X, Chen L, Kong C, Liu W, Li S, Jiang J. Downregulation of HHLA2 inhibits ovarian cancer progression via the NF-κB signaling pathway and suppresses the expression of CA9. Cell Immunol 2023; 388-389:104730. [PMID: 37210768 DOI: 10.1016/j.cellimm.2023.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
HHLA2 has been recently demonstrated to play multifaceted roles in several types of cancers. However, its underlying mechanism in the progression of human ovarian cancer (OC) remains largely unexplored. In the present study, we aimed to determine whether downregulation of HHLA2 inhibited malignant phenotypes of human OC cells and explore its specific mechanism. Our results revealed that downregulation of HHLA2 by transfection with a lentiviral vector significantly suppressed the viability, invasion, and migration of OC cells. Interaction study showed that downregulation of HHLA2 in OC cells reduced the expression of CA9 and increased the expressions of p-IKKβ and p-RelA. Conversely, the viability, invasion, and migration of HHLA2-depleted OC cells were increased when CA9 was upregulated. In vivo, we found that downregulation of HHLA2 significantly inhibited tumor growth, which was reversed by CA9 overexpression. In addition, downregulation of HHLA2 inhibited the OC progression via activating the NF-κB signaling pathway and decreasing the expression of CA9. Collectively, our data suggested a link between HHLA2 and NF-κB axis in the pathogenesis of OC, and these findings might provide valuable insights into the development of novel potential therapeutic targets for OC.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China; Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Panpan Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Lujun Chen
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China
| | - Caixia Kong
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Wenzhi Liu
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China
| | - Shuping Li
- Department of Gynecology, Changzhou Traditional Chinese Medicine Hospital, Changzhou, China.
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China; Jiangsu Engineering Research Center for Tumor Immunotherapy, Changzhou, China; Institute of Cell Therapy, Soochow University, Changzhou, China.
| |
Collapse
|
22
|
Szymkowiak I, Kucinska M, Murias M. Between the Devil and the Deep Blue Sea-Resveratrol, Sulfotransferases and Sulfatases-A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules 2023; 28:molecules28083297. [PMID: 37110530 PMCID: PMC10140952 DOI: 10.3390/molecules28083297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
For nearly 30 years, resveratrol has attracted the scientific community's interest. This has happened thanks to the so-called French paradox, that is, the paradoxically low mortality from cardiovascular causes in the French population despite a diet rich in saturated fat. This phenomenon has been linked to the consumption of red wine, which contains a relatively high level of resveratrol. Currently, resveratrol is valued for its versatile, beneficial properties. Apart from its anti-atherosclerotic activity, resveratrol's antioxidant and antitumor properties deserve attention. It was shown that resveratrol inhibits tumour growth at all three stages: initiation, promotion, and progression. Moreover, resveratrol delays the ageing process and has anti-inflammatory, antiviral, antibacterial, and phytoestrogenic properties. These favorable biological properties have been demonstrated in vitro and in vivo in animal and human models. Since the beginning of the research on resveratrol, its low bioavailability, mainly due to its rapid metabolism, especially the first-pass effect that leaves almost no free resveratrol in the peripheral circulation, has been indicated as a drawback that has hindered its use. The elucidation of such issues as pharmacokinetics, stability, and the biological activity of resveratrol metabolites is therefore crucial for understanding the biological activity of resveratrol. Second-phase metabolism enzymes are mainly involved in RSV metabolism, e.g., UDP-glucuronyl transferases and sulfotransferases. In the present paper, we took a closer look at the available data on the activity of resveratrol sulfate metabolites and the role of sulfatases in releasing active resveratrol in target cells.
Collapse
Affiliation(s)
- Izabela Szymkowiak
- Curtis Health Caps S.A., ul. Batorowska 52, 62-081 Przeźmierowo, Poland
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego, 61-614 Poznan, Poland
| |
Collapse
|
23
|
Mayoh C, Gifford AJ, Terry R, Lau LMS, Wong M, Rao P, Shai-Hee T, Saletta F, Khuong-Quang DA, Qin V, Mateos MK, Meyran D, Miller KE, Yuksel A, Mould EVA, Bowen-James R, Govender D, Senapati A, Zhukova N, Omer N, Dholaria H, Alvaro F, Tapp H, Diamond Y, Pozza LD, Moore AS, Nicholls W, Gottardo NG, McCowage G, Hansford JR, Khaw SL, Wood PJ, Catchpoole D, Cottrell CE, Mardis ER, Marshall GM, Tyrrell V, Haber M, Ziegler DS, Vittorio O, Trapani JA, Cowley MJ, Neeson PJ, Ekert PG. A novel transcriptional signature identifies T-cell infiltration in high-risk paediatric cancer. Genome Med 2023; 15:20. [PMID: 37013636 PMCID: PMC10071693 DOI: 10.1186/s13073-023-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Molecular profiling of the tumour immune microenvironment (TIME) has enabled the rational choice of immunotherapies in some adult cancers. In contrast, the TIME of paediatric cancers is relatively unexplored. We speculated that a more refined appreciation of the TIME in childhood cancers, rather than a reliance on commonly used biomarkers such as tumour mutation burden (TMB), neoantigen load and PD-L1 expression, is an essential prerequisite for improved immunotherapies in childhood solid cancers. METHODS We combined immunohistochemistry (IHC) with RNA sequencing and whole-genome sequencing across a diverse spectrum of high-risk paediatric cancers to develop an alternative, expression-based signature associated with CD8+ T-cell infiltration of the TIME. Furthermore, we explored transcriptional features of immune archetypes and T-cell receptor sequencing diversity, assessed the relationship between CD8+ and CD4+ abundance by IHC and deconvolution predictions and assessed the common adult biomarkers such as neoantigen load and TMB. RESULTS A novel 15-gene immune signature, Immune Paediatric Signature Score (IPASS), was identified. Using this signature, we estimate up to 31% of high-risk cancers harbour infiltrating T-cells. In addition, we showed that PD-L1 protein expression is poorly correlated with PD-L1 RNA expression and TMB and neoantigen load are not predictive of T-cell infiltration in paediatrics. Furthermore, deconvolution algorithms are only weakly correlated with IHC measurements of T-cells. CONCLUSIONS Our data provides new insights into the variable immune-suppressive mechanisms dampening responses in paediatric solid cancers. Effective immune-based interventions in high-risk paediatric cancer will require individualised analysis of the TIME.
Collapse
Affiliation(s)
- Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Rachael Terry
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Loretta M S Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Padmashree Rao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Tyler Shai-Hee
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Vicky Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Marion K Mateos
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Aysen Yuksel
- Tumour Bank, Children's Hospital Westmead, Westmead, NSW, Australia
| | - Emily V A Mould
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
| | - Rachel Bowen-James
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Computer Science and Engineering, UNSW Sydney, Kensington, NSW, Australia
- School of Biomedical Engineering, UNSW Sydney, Kensington, NSW, Australia
| | - Dinisha Govender
- Cancer Centre for Children, Children's Hospital Westmead, Westmead, NSW, Australia
| | - Akanksha Senapati
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Nataliya Zhukova
- Monash Children's Hospital, Melbourne, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Natacha Omer
- Oncology Service, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, Australia
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hetal Dholaria
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Frank Alvaro
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Heather Tapp
- Michael Rice Cancer Centre, Women's and Children's Hospital, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
| | - Luciano Dalla Pozza
- Cancer Centre for Children, Children's Hospital Westmead, Westmead, NSW, Australia
| | - Andrew S Moore
- Oncology Service, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Wayne Nicholls
- Oncology Service, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, Australia
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas G Gottardo
- Department of Paediatric and Adolescent Oncology and Haematology, Perth Children's Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Cancer Centre for Children, Children's Hospital Westmead, Westmead, NSW, Australia
| | - Jordan R Hansford
- Michael Rice Cancer Centre, Women's and Children's Hospital, South Australia Health and Medical Research Institute, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Seong-Lin Khaw
- Children's Cancer Centre, Royal Children's Hospital, Parkville, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Paul J Wood
- Monash Children's Hospital, Melbourne, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | | | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Kensington, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
24
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
25
|
Galizia D, Minei S, Maldi E, Chilà G, Polidori A, Merlano MC. How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines 2022; 10:biomedicines10102498. [PMID: 36289760 PMCID: PMC9599463 DOI: 10.3390/biomedicines10102498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Most head and neck squamous cell carcinomas (HNSCCs) are caused by lifestyle, such as cigarette smoking, or by viruses, such as human papillomavirus (HPV) and Epstein–Barr virus (EBV). HNSCC remains a clinical challenge, notwithstanding the improvements observed in the past years, involving surgery, radiotherapy, and chemotherapy. Recurrent/metastatic (R/M) disease represents an unmet clinical need. Immunotherapy has improved the prognosis of a small proportion of these patients, but most still do not benefit. In the last decade, several preclinical and clinical studies have explored the HNSCC tumor immune microenvironment (TIME), identifying important differences between smoking-associated and virus-associated HNSCCs. This review aims to present how different etiologies affect the HNSCC TIME, affecting immune escape mechanisms and sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| | - Silvia Minei
- Post-Graduate School of Specialization in Medical Oncology, University of Bari ‘A. Moro’, 70120 Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Giovanna Chilà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | | |
Collapse
|
26
|
Zhang LJ, Chen F, Liang XR, Ponnusamy M, Qin H, Lin ZJ. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022; 12:1008856. [PMID: 36263199 PMCID: PMC9574020 DOI: 10.3389/fonc.2022.1008856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), which lack protein-coding ability, can regulate cancer cell growth, proliferation, invasion, and metastasis. Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment that have a significant impact on cancer progression. Small extracellular vesicles (sEV) are crucial mediators of intercellular communications. Cancer cell and macrophage-derived sEV can carry lncRNAs that influence the onset and progression of cancer. Dysregulation of lncRNAs, TAMs, and sEV is widely observed in tumors which makes them valuable targets for cancer immunotherapy. In this review, we summarize current updates on the interactions among sEV, lncRNAs, and TAMs in tumors and provide new perspectives on cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Li-jie Zhang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Feng Chen
- Department of General Surgery, Weifang Traditional Chinese Hospital, Weifang, China
| | - Xiao-ru Liang
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | | | - Hao Qin
- Department of Public Health, Weifang Medical University, Weifang, China
| | - Zhi-juan Lin
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
- *Correspondence: Zhi-juan Lin,
| |
Collapse
|
27
|
Influence of Dehydroxymethylepoxyquinomicin on Radiosensitivity of Thyroid Carcinoma TPC-1 Cells. JOURNAL OF ONCOLOGY 2022; 2022:5026308. [PMID: 36213820 PMCID: PMC9546666 DOI: 10.1155/2022/5026308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Objective. To investigate the influence of dehydroxymethylepoxyquinomicin (DHMEQ), an NF-κB inhibitor, on radiosensitivity of thyroid carcinoma (TC) TPC-1 cells. Methods. The isolation of CDl33 positive cells (CD133+ TPC-1) and negative cells (CD133- TPC-1) from TPC-1 cells used immunomagnetic bead sorting. After verification of the toxicity of DHMEQ to cells by MTT and cell cloning assays, the cells were divided into four groups, of which three groups were intervened by DHMEQ, 131I radiation, and DHMEQ +131I radiation, respectively, while the fourth group was used as a control without treatment. Alterations in cell growth, apoptosis, and cell cycle were observed. Results. DHMEQ had certain toxic effects on TPC-1 cells, with an IC50 of 38.57 μg/mL (
). DHMEQ inhibited CD133+ and CD133- TPC-1 proliferation and their clonogenesis after irradiation. DHMEQ + radiation contributed to a growth inhibition rate and an apoptosis rate higher than either or them alone (
), with a more significant effect on CD133- TPC-1 than CD133+ TPC-1 under the same treatment conditions (
). Conclusion. DHEMQ can increase the radiosensitivity of TC cells to 131I, inhibit tumor cell growth, and promote apoptosis. However, its effect is less significant on CD133+ TPC-1 compared with CD133- TPC-1, which may be related to the stem cell-like properties of CD133+ cells. In the future, the application of DHMEQ in TC 131I radiotherapy will effectively improve the clinical effect of patients.
Collapse
|
28
|
Qiao C, Wang H, Guan Q, Wei M, Li Z. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: Insights and future perspectives. Asian J Pharm Sci 2022; 17:613-629. [PMID: 36382305 PMCID: PMC9640473 DOI: 10.1016/j.ajps.2022.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
There are limited options for patients who develop liver metastasis from colorectal cancer (CRC), the leading cause of cancer-related mortality worldwide. Emerging evidence has provided insights into iron deficiency and excess in CRC. Ferroptosis is an iron-dependent form of programmed cell death characterized by aberrant iron and lipid metabolism, which play crucial roles in tumorigenesis, tumor progression, and treatment options. A better understanding of the underlying molecular mechanism of ferroptosis has shed light on the current findings of ferroptosis-based nanodrug targeting strategies, such as driving ferroptosis in tumor cells and the tumor microenvironment, emerging combination therapy and against multidrug resistance. Furthermore, this review highlights the challenge and perspective of a ferroptosis-driven nanodrug delivery system for CRC-targeted therapy.
Collapse
Affiliation(s)
- Chu Qiao
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Haiying Wang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qiutong Guan
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
29
|
Seliger B, Massa C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol 2022; 13:883639. [PMID: 35663987 PMCID: PMC9160824 DOI: 10.3389/fimmu.2022.883639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the broad application of different immunotherapeutic strategies for the treatment of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with only a minority of patients having a long-term benefit resulting in an improved survival rate. In order to increase the response rates of patients to the currently available immunotherapies, a better understanding of the molecular mechanisms underlying the intrinsic and/or extrinsic resistance to treatment is required. There exist increasing evidences that activation of different oncogenic pathways as well as inactivation of tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and influegnce the composition of the tumor microenvironment (TME), thus leading to an impaired anti-tumoral immune response. A deeper understanding of the link between the tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the optimization of immunotherapies and to predict the patients’ response to these treatments. This review summarizes the role of different cancer-related, oncogene- and TSG-controlled pathways in the context of anti-tumoral immunity and response to different immunotherapies.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
30
|
Jorquera-Cordero C, Lara P, Cruz LJ, Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L, Koning RI, Chan AB, de Araujo Junior RF. Extracellular Vesicles from M1-Polarized Macrophages Combined with Hyaluronic Acid and a β-Blocker Potentiate Doxorubicin’s Antitumor Activity by Downregulating Tumor-Associated Macrophages in Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14051068. [PMID: 35631654 PMCID: PMC9143936 DOI: 10.3390/pharmaceutics14051068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022] Open
Abstract
One of the main reasons for cancer’s low clinical response to chemotherapeutics is the highly immunosuppressive tumor microenvironment (TME). Tumor-ass ociated M2 macrophages (M2-TAMs) orchestrate the immunosuppression, which favors tumor progression. Extracellular vesicles (EVs) have shown great potential for targeted therapies as, depending on their biological origin, they can present different therapeutic properties, such as enhanced accumulation in the target tissue or modulation of the immune system. In the current study, EVs were isolated from M1-macrophages (M1-EVs) pre-treated with hyaluronic acid (HA) and the β-blocker carvedilol (CV). The resulting modulated-M1 EVs (MM1-EVs) were further loaded with doxorubicin (MM1-DOX) to assess their effect in a mouse model of metastatic tumor growth. The cell death and cell migration profile were evaluated in vitro in 4T1 cells. The polarization of the RAW 264.7 murine macrophage cell line was also analyzed to evaluate the effects on the TME. Tumors were investigated by qRT-PCR and immunohistochemistry. MM1-DOX reduced the primary tumor size and metastases. NF-κB was the major gene downregulated by MM1-DOX. Furthermore, MM1-DOX reduced the expression of M2-TAM (CD-163) in tumors, which resulted in increased apoptosis (FADD) as well as decreased expression of MMP-2 and TGF-β. These results suggest a direct effect in tumors and an upregulation in the TME immunomodulation, which corroborate with our in vitro data that showed increased apoptosis, modulation of macrophage polarization, and reduced cell migration after treatment with M1-EVs combined with HA and CV. Our results indicate that the M1-EVs enhanced the antitumor effects of DOX, especially if combined with HA and CV in an animal model of metastatic cancer.
Collapse
Affiliation(s)
- Carla Jorquera-Cordero
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (C.J.-C.); (L.C.); (A.B.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
| | - Pablo Lara
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.J.C.); (A.v.H.)
- Correspondence: (P.L.); (R.F.d.A.J.); Tel.: +31-06-21180677 (P.L.); +31-65-562-0247 (R.F.d.A.J.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.J.C.); (A.v.H.)
| | - Timo Schomann
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.J.C.); (A.v.H.)
| | - Anna van Hofslot
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.J.C.); (A.v.H.)
| | - Thaís Gomes de Carvalho
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
- Postgraduate Program in Health Science, Health Science Department, Federal University of Rio Grande do Norte (UFRN), Natal 59078 970, RN, Brazil
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal 59078 970, RN, Brazil
| | - Paulo Marcos Da Matta Guedes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal 59078 970, RN, Brazil;
| | - Laura Creemers
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (C.J.-C.); (L.C.); (A.B.C.)
| | - Roman I. Koning
- Electron Microscopy, Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Alan B. Chan
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (C.J.-C.); (L.C.); (A.B.C.)
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
| | - Raimundo Fernandes de Araujo Junior
- Percuros B.V., 2333 CL Leiden, The Netherlands; (T.S.); (T.G.d.C.)
- Translational Nanobiomaterials and Imaging (TNI) Group, Radiology Department, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (L.J.C.); (A.v.H.)
- Postgraduate Program in Health Science, Health Science Department, Federal University of Rio Grande do Norte (UFRN), Natal 59078 970, RN, Brazil
- Cancer and Inflammation Research Laboratory, Department of Morphology, Federal University of Rio Grande do Norte, Natal 59078 970, RN, Brazil
- Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59078 970, RN, Brazil
- Correspondence: (P.L.); (R.F.d.A.J.); Tel.: +31-06-21180677 (P.L.); +31-65-562-0247 (R.F.d.A.J.)
| |
Collapse
|
31
|
Wager K, Chari D, Ho S, Rees T, Penner O, Schijvenaars BJA. Identifying and Validating Networks of Oncology Biomarkers Mined From the Scientific Literature. Cancer Inform 2022; 21:11769351221086441. [PMID: 35342286 PMCID: PMC8943609 DOI: 10.1177/11769351221086441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Biomarkers, as measurements of defined biological characteristics, can play a pivotal role in estimations of disease risk, early detection, differential diagnosis, assessment of disease progression and outcomes prediction. Studies of cancer biomarkers are published daily; some are well characterized, while others are of growing interest. Managing this flow of information is challenging for scientists and clinicians. We sought to develop a novel text-mining method employing biomarker co-occurrence processing applied to a deeply indexed full-text database to generate time-interval–delimited biomarker co-occurrence networks. Biomarkers across 6 cancer sites and a cancer-agnostic network were successfully characterized in terms of their emergence in the published literature and the context in which they are described. Our approach, which enables us to find publications based on biomarker relationships, identified biomarker relationships not known to existing interaction networks. This search method finds relevant literature that could be missed with keyword searches, even if full text is available. It enables users to extract relevant biological information and may provide new biological insights that could not be achieved by individual review of papers.
Collapse
|
32
|
Revol-Bauz L, Grinberg-Bleyer Y. [Inhibition of anti-tumor immunity by NF-κB: Toward therapeutic targeting?]. Med Sci (Paris) 2022; 38:230-232. [PMID: 35179482 DOI: 10.1051/medsci/2022013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Lara Revol-Bauz
- Master de cancérologie, module d'immunologie - virologie, université Claude Bernard Lyon 1, Lyon, France
| | - Yenkel Grinberg-Bleyer
- Centre de recherche en cancérologie de Lyon, UMR Inserm 1052, CNRS 5286, centre Léon Bérard, université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
33
|
Nanoparticle-based drug delivery systems in cancer: A focus on inflammatory pathways. Semin Cancer Biol 2022; 86:860-872. [PMID: 35115226 DOI: 10.1016/j.semcancer.2022.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 12/16/2022]
Abstract
It has become necessary to accept the clinical reality of therapeutic agents targeting the cancer-associated immune system. In recent decades, several investigations have highlighted the role of inflammation in cancer development. It has now been recognized that inflammatory cells secrete mediators, including enzymes, chemokines, and cytokines. These secreted substances produce an inflammatory microenvironment that is critically involved in cancer growth. Inflammation may enhance genomic instability leading to DNA damage, activation of oncogenes, or compromised tumor suppressor activity, all of which may promote various phases of carcinogenesis. Conventional cancer treatment includes surgery, radiation, and chemotherapy. However, treatment failure occurs because current strategies are unable to achieve complete local control due to metastasis. Nanoparticles (NPs) are a broad spectrum of drug carriers typically below the size of 100 nm, targeting tumor sites while reducing off-target consequences. More importantly, NPs can stimulate innate and adaptive immune systems in the tumor microenvironment (TME); hence, they induce a cancer-fighting immune response. Strikingly, targeting cancer cells with NPs helps eliminate drug resistance and tumor recurrence, as well as prevents inflammation. Throughout this review, we provide recent data on the role of inflammation in cancer and explore nano-therapeutic initiatives to target significant mediators, for example, nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukins (ILs) associated with cancer-related inflammation, to escort the immunomodulators to cancer cells and associated systemic compartments. We also highlight the necessity of better identifying inflammatory pathways in cancer pathophysiology to develop effective treatment plans.
Collapse
|
34
|
Zhao Y, Hao D, Zhang H, Wang J, Liu C. Selenium-Enriched Yeast Relieves Hexavalent Chromium Toxicity by Inhibiting NF-κB Signaling Pathway in Broiler Spleens. Animals (Basel) 2022; 12:ani12020146. [PMID: 35049769 PMCID: PMC8772575 DOI: 10.3390/ani12020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Hexavalent chromium is a common environmental pollution. It has been reported that hexavalent chromium threatens the health of humans and animals, so it is necessary to develop new, effective mitigation methods. Selenium is an indispensable micronutrient recently shown to be able to resist the toxicity of heavy metals. Selenium-enriched yeast has a high content of total selenium, which has the advantages of a high absorption rate and safety. Potassium dichromate and selenium-enriched yeast were used to construct single hexavalent chromium and combined selenium/hexavalent-chromium-exposed broiler models. Additionally, the ability to relieve the hexavalent chromium toxicity of selenium along with the molecular mechanisms focusing on inflammation induced by the NF-κB signaling pathway was investigated in this study. Histopathological assessment, serum biochemical tests, oxidative stress kits, enzyme-linked immunosorbent assay, quantitative real-time PCR, and Western blotting were used to detect indicators. We found that the oxidative stress induced by hexavalent chromium triggers NF-κB pathway-driven inflammatory responses in the broiler spleen and further reduces the immune function of broilers. Selenium-enriched yeast protects the spleen from the toxicity of hexavalent chromium exposure through inhibiting the NF-κB signaling pathway. Abstract This study was conducted to investigate the molecular mechanisms of selenium (Se) antagonism of hexavalent chromium (Cr6+)-induced toxicity. Potassium dichromate (K2Cr2O7) and selenium-enriched yeast (SeY) were used to construct the single Cr6+ and combined Se/Cr6+ exposure broiler models, and then the broilers were randomly divided into four groups (C group, Se group, Se/Cr6+ group, and Cr6+ group). After a 42-day experiment, the spleen tissues of broilers were excised and weighted. The antagonistic mechanisms of Se and Cr6+ were evaluated using histopathological assessment, serum biochemical tests, oxidative stress kits, ELISA, qPCR, and Western blotting. On the whole, there were no significant changes between the C and Se groups. The spleen organ index in the Cr6+ group was significantly decreased, but SeY increased spleen organ index to a certain extent. The levels of SOD and GSH were reduced, and the MDA content was elevated by Cr6+; however, these changes were mitigated by Se/Cr6+ exposure. Importantly, Cr6+ exposure induced a series of histopathological injuries in broiler spleen tissues, while these symptoms were significantly relieved in the Se/Cr6+group. Furthermore, Cr6+ significantly decreased the levels of T-globulin, IgA, IgM, and IgG in serum. Contrarily, dramatically more T-globulin IgA, IgM, and IgG were found in the Se/Cr6+group than in the Cr6+ group. Revealed by the results of qPCR and WB, the expressions of NF-κB, IκBα, and p-IκBα were upregulated in Cr6+ groups, while they were downregulated in Se/Cr6+ group compared to that in Cr6+ group. Besides IFN-γ and IL-2, the expressions of pro-inflammatory cytokines were significantly increased by Cr6+ exposure, but the SeY supplement relived the expression levels mediated by Cr6+ exposure. In conclusion, our findings suggest SeY has biological activity that can protect broiler spleens from immunosuppression and inflammation induced by Cr6+, and we speculate that the NF-κB signaling pathway is one of its mechanisms.
Collapse
|
35
|
Guo H, Zheng L, Guo Y, Han L, Yu J, Lai F. Curculigoside Represses the Proliferation and Metastasis of Osteosarcoma via the JAK/STAT and NF-κB Signaling Pathways. Biol Pharm Bull 2022; 45:1466-1475. [PMID: 36184504 DOI: 10.1248/bpb.b22-00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Curculigoside (Cur) is a natural component from Curculigo orchioides Gaertn, with various bioactivities. The function of Cur in the nervous system and osteoarthritis has been reported. However, its role in osteosarcoma (OS) needs to be investigated. Hence, we focus on probing the impact of Cur on OS. In vitro, cell counting kit 8 (CCK-8), flow cytometry and Transwell assay were used to investigate the effects of Cur on OS cell proliferation, apoptosis, migration and invasion. In vivo, we developed a xenograft model to figure out the effect of Cur on tumor growth in nude mice. Western blotting (WB) was conducted to compare the levels of Cur on apoptosis-related proteins (C-caspase-3, Bax, and Bcl-2), epithelial-mesenchymal transition (EMT)-related proteins (N-cadherin, Snail, and E-cadherin) and the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and nuclear factor-κB (NF-κB) pathways in vitro and in vivo. In-vitro data testified that Cur treatment markedly hampered OS cells' growth, migration and invasion and intensified their apoptosis compared to that of the control group. In vivo, Cur treatment notably hampered the growth of OS tumors in mice. In addition, both in vitro and in vivo experiments demonstrated that the phosphorylation of JAK2, STAT3, and NF-κB were inhibited through Cur treatment. Furthermore, the inhibition of Cur in OS cells was demonstrated by up-regulating the expression of JAK/STAT and NF-κB pathways protein levels. In summary, the data suggest that Cur curbs OS growth by down-regulating the JAK/STAT and NF-κB pathways, which is an underlying therapeutic option for OS treatment.
Collapse
Affiliation(s)
- Huiwen Guo
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine
| | - Lixiang Zheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine
| | - Yepin Guo
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Lu Han
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Jing Yu
- College of Humanities, Jiangxi University of Chinese Medicine
| | - Fuchong Lai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province
| |
Collapse
|
36
|
Xie W, Huang W, Cai S, Chen H, Fu W, Chen Z, Liu Y. NF‑κB/IκBα signaling pathways are essential for resistance to heat stress‑induced ROS production in pulmonary microvascular endothelial cells. Mol Med Rep 2021; 24:814. [PMID: 34558646 PMCID: PMC8477608 DOI: 10.3892/mmr.2021.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
The results of a previous study demonstrated that heat stress (HS) triggered oxidative stress, which in turn induced the apoptosis of epithelial cells. These results uncovered a novel mechanism underlying the activation of NF-κB in primary human umbilical vein endothelial cells. The present study aimed to further investigate the role of NF-κB/IκBα signaling pathways in the inhibition of HS-induced reactive oxygen species (ROS) generation and cytotoxicity in endothelial cells. The results of the present study demonstrated that HS triggered a significant amount of NF-κB and IκBα nuclear translocation without IκBα degradation in a time-dependent manner. Mutant constructs of IκBα phosphorylation sites (Ser32, Ser36) were employed in rat pulmonary microvascular endothelial cells (PMVECs). Cell Counting Kit-8 assays demonstrated that both the small interfering (si)RNA-mediated knockdown of p65 and IκBα mutant constructs significantly decreased cell viability and aggravated ROS accumulation in HS-induced rat PMVECs compared with the control. Additionally, western blot analysis revealed that p65 siRNA attenuated the protein expression of IκBα. However, IκBα mutant constructs failed to attenuate NF-κB activation and nuclear translocation, indicating that IκBα-independent pathways contributed to NF-κB activity and nucleus translocation in a time-dependent manner following HS. Collectively, the results of the present study suggested that the NF-κB/IκBα pathway was essential for resistance to HS-induced ROS production and cytotoxicity in rat PMVECs, and that it could be a potential therapeutic target to reduce the mortality and morbidity of heat stroke.
Collapse
Affiliation(s)
- Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
37
|
Punicalagin in Cancer Prevention-Via Signaling Pathways Targeting. Nutrients 2021; 13:nu13082733. [PMID: 34444893 PMCID: PMC8400644 DOI: 10.3390/nu13082733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
The extract of pomegranate (Punica granatum) has been applied in medicine since ancient times due to its broad-spectrum health-beneficial properties. It is a rich source of hydrolyzable tannins and anthocyanins, exhibiting strong antioxidative, anti-inflammatory, and antineoplastic properties. Anticancer activities of pomegranate with reference to modulated signaling pathways in various cancer diseases have been recently reviewed. However, less is known about punicalagin (Pug), a prevailing compound in pomegranate, seemingly responsible for its most beneficial properties. In this review, the newest data derived from recent scientific reports addressing Pug impact on neoplastic cells are summarized and discussed. Its attenuating effect on signaling circuits promoting cancer growth and invasion is depicted. The Pug-induced redirection of signal-transduction pathways from survival and proliferation into cell-cycle arrest, apoptosis, senescence, and autophagy (thus compromising neoplastic progression) is delineated. Considerations presented in this review are based mainly on data obtained from in vitro cell line models and concern the influence of Pug on human cervical, ovarian, breast, lung, thyroid, colorectal, central nervous system, bone, as well as other cancer types.
Collapse
|
38
|
Abstract
The development of tumors requires an initiator event, usually exposure to DNA damaging agents that cause genetic alterations such as gene mutations or chromosomal abnormalities, leading to deregulated cell proliferation. Although the mere stochastic accumulation of further mutations may cause tumor progression, it is now clear that an inflammatory microenvironment has a major tumor-promoting influence on initiated cells, in particular when a chronic inflammatory reaction already existed before the initiated tumor cell was formed. Moreover, inflammatory cells become mobilized in response to signals emanating from tumor cells. In both cases, the microenvironment provides signals that initiated tumor cells perceive by membrane receptors and transduce via downstream kinase cascades to modulate multiple cellular processes and respond with changes in cell gene expression, metabolism, and morphology. Cytokines, chemokines, and growth factors are examples of major signals secreted by immune cells, fibroblast, and endothelial cells and mediate an intricate cell-cell crosstalk in an inflammatory microenvironment, which contributes to increased cancer cell survival, phenotypic plasticity and adaptation to surrounding tissue conditions. Eventually, consequent changes in extracellular matrix stiffness and architecture, coupled with additional genetic alterations, further fortify the malignant progression of tumor cells, priming them for invasion and metastasis. Here, we provide an overview of the current knowledge on the composition of the inflammatory tumor microenvironment, with an emphasis on the major signals and signal-transducing events mediating different aspects of stromal cell-tumor cell communication that ultimately lead to malignant progression.
Collapse
|