1
|
Ribatti D. Tryptase and tumor angiogenesis. Front Oncol 2024; 14:1500482. [PMID: 39749033 PMCID: PMC11693740 DOI: 10.3389/fonc.2024.1500482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/26/2024] [Indexed: 01/04/2025] Open
Abstract
Tryptases represent the most abundant constituent of human mast cells, involved in extracellular matrix degradation, contributing to wound healing and metastasis. Moreover, most recently, it has been demonstrated that tryptase is angiogenic both in vitro and in vivo. Tryptase-positive mast cell number increases parallelly with increased microvascular density in both solid and hematological tumors. The objective and the scope of this review article are to emphasize the important role of tryptase as one of the principal effectors of tumor angiogenesis mediated by mast cells. In this context, tryptase inhibitors may be considered a novel therapeutic approach in cancer treatment.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
2
|
Laface C, Ricci AD, Vallarelli S, Ostuni C, Rizzo A, Ambrogio F, Centonze M, Schirizzi A, De Leonardis G, D’Alessandro R, Lotesoriere C, Giannelli G. Autotaxin-Lysophosphatidate Axis: Promoter of Cancer Development and Possible Therapeutic Implications. Int J Mol Sci 2024; 25:7737. [PMID: 39062979 PMCID: PMC11277072 DOI: 10.3390/ijms25147737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Autotaxin (ATX) is a member of the ectonucleotide pyrophosphate/phosphodiesterase (ENPP) family; it is encoded by the ENPP2 gene. ATX is a secreted glycoprotein and catalyzes the hydrolysis of lysophosphatidylcholine to lysophosphatidic acid (LPA). LPA is responsible for the transduction of various signal pathways through the interaction with at least six G protein-coupled receptors, LPA Receptors 1 to 6 (LPAR1-6). The ATX-LPA axis is involved in various physiological and pathological processes, such as angiogenesis, embryonic development, inflammation, fibrosis, and obesity. However, significant research also reported its connection to carcinogenesis, immune escape, metastasis, tumor microenvironment, cancer stem cells, and therapeutic resistance. Moreover, several studies suggested ATX and LPA as relevant biomarkers and/or therapeutic targets. In this review of the literature, we aimed to deepen knowledge about the role of the ATX-LPA axis as a promoter of cancer development, progression and invasion, and therapeutic resistance. Finally, we explored its potential application as a prognostic/predictive biomarker and therapeutic target for tumor treatment.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Simona Vallarelli
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Carmela Ostuni
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Alessandro Rizzo
- Medical Oncology, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Rosalba D’Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, “IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (A.S.); (G.D.L.)
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, 70013 Castellana Grotte, Italy
| |
Collapse
|
3
|
Fu Y, Tao J, Liu T, Liu Y, Qiu J, Su D, Wang R, Luo W, Cao Z, Weng G, Zhang T, Zhao Y. Unbiasedly decoding the tumor microenvironment with single-cell multiomics analysis in pancreatic cancer. Mol Cancer 2024; 23:140. [PMID: 38982491 PMCID: PMC11232163 DOI: 10.1186/s12943-024-02050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.
Collapse
Affiliation(s)
- Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruobing Wang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Klabukov I, Atiakshin D, Kogan E, Ignatyuk M, Krasheninnikov M, Zharkov N, Yakimova A, Grinevich V, Pryanikov P, Parshin V, Sosin D, Kostin AA, Shegay P, Kaprin AD, Baranovskii D. Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation. Int J Mol Sci 2023; 24:16783. [PMID: 38069106 PMCID: PMC10706106 DOI: 10.3390/ijms242316783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 249031 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Evgenia Kogan
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nickolay Zharkov
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Vyacheslav Grinevich
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Pavel Pryanikov
- Russian Child Clinical Hospital, Pirogov Russian National Research Medical University, 119571 Moscow, Russia
| | - Vladimir Parshin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Andrey A. Kostin
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Department of Biomedicine, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
5
|
Alimohammadi S, Masuda-Kuroki K, Szöllősi AG, Di Nardo A. Factors Influencing Marker Expressions of Cultured Human Cord Blood-Derived Mast Cells. Int J Mol Sci 2023; 24:14891. [PMID: 37834338 PMCID: PMC10573221 DOI: 10.3390/ijms241914891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells of a hematopoietic origin that play vital roles in innate and adaptive immunity. Human MCs can be isolated and differentiated from various tissue sources, including cord blood, when supplemented with cytokines such as stem cell factor, interleukin 3, and interleukin 6. Our current research study has shown significant differences in the marker expressions of human cord blood-derived mast cells (hCBMCs) based on donor dependency and the type of medium used for culturing and differentiation. These findings are particularly relevant given the challenges of obtaining specialty media influencing MC phenotypic marker expressions. We found that hCBMCs cultured in StemSpanTM-XF medium had a moderate expression of mast/stem cell growth factor receptor Kit (c-KIT) (mRNA and protein), low expressions of FcεRI (mRNA) and TLR2 (mRNA and protein) but had high levels of MRGPRX2 (mRNA and protein) expressions. In contrast, hCBMCs cultured in Stem Line II medium expressed FcεRI and TLR2 (mRNA and protein) with higher c-KIT but had lower MRGPRX2 expressions compared to the hCBMCs cultured in the StemSpanTM-XF medium. These results suggest that it is crucial to consider both donor dependency and the medium when investigating MC functions and that further research is needed to fully understand the impact of these factors on the hCBMC marker expressions.
Collapse
Affiliation(s)
- Shahrzad Alimohammadi
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Kana Masuda-Kuroki
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
| | - Attila Gábor Szöllősi
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anna Di Nardo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA; (S.A.); (K.M.-K.)
| |
Collapse
|
6
|
Laface C, Memeo R. Clinical Updates for Gastrointestinal Malignancies. J Pers Med 2023; 13:1424. [PMID: 37763191 PMCID: PMC10533174 DOI: 10.3390/jpm13091424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Gastrointestinal (GI) cancers include hepatobiliary tumors, pancreatic cancer (PC), neuroendocrine tumors of the gastrointestinal tract, small bowel carcinomas, gastric cancer (GC), anal canal cancer, primary gastric and intestinal lymphomas, gastrointestinal stromal tumors (GISTs) and the most frequent colorectal cancer (CRC) [...].
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, “F. Miulli” General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| |
Collapse
|
7
|
Laface C, Memeo R, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Cazzato G, Guarini C, De Santis P, Perrone M, Fedele P. Immunotherapy and Pancreatic Cancer: A Lost Challenge? Life (Basel) 2023; 13:1482. [PMID: 37511856 PMCID: PMC10381818 DOI: 10.3390/life13071482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Although immunotherapy has proved to be a very efficient therapeutic strategy for many types of tumors, the results for pancreatic cancer (PC) have been very poor. Indeed, chemotherapy remains the standard treatment for this tumor in the advanced stage. Clinical data showed that only a small portion of PC patients with high microsatellite instability/mismatch repair deficiency benefit from immunotherapy. However, the low prevalence of these alterations was not sufficient to lead to a practice change in the treatment strategy of this tumor. The main reasons for the poor efficacy of immunotherapy probably lie in the peculiar features of the pancreatic tumor microenvironment in comparison with other malignancies. In addition, the biomarkers usually evaluated to define immunotherapy efficacy in other cancers appear to be useless in PC. This review aims to describe the main features of the pancreatic tumor microenvironment from an immunological point of view and to summarize the current data on immunotherapy efficacy and immune biomarkers in PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
8
|
Ye L, Shi S, Chen W. Innate immunity in pancreatic cancer: Lineage tracing and function. Front Immunol 2023; 13:1081919. [PMID: 36726981 PMCID: PMC9884680 DOI: 10.3389/fimmu.2022.1081919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Increasingly, patients with gastrointestinal tumors can benefit from immunotherapy, but not patients with pancreatic cancer. While this lack of benefit has been attributed to lower T-cell infiltration in pancreatic cancer, other studies have demonstrated the presence of numerous T cells in pancreatic cancer, suggesting another mechanism for the poor efficacy of immunotherapy. Single-cell RNA sequencing studies on the pancreatic cancer immune microenvironment have demonstrated the predominance of innate immune cells (e.g., macrophages, dendritic cells, mast cells, and innate immune lymphoid cells). Therefore, in-depth research on the source and function of innate immune lymphocytes in pancreatic cancer could guide pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Pancreatic Cancer Institute, Shanghai, China,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Pancreatic Cancer Institute, Shanghai, China,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China,Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China,*Correspondence: Wei Chen,
| |
Collapse
|
9
|
Shi S, Ye L, Yu X, Jin K, Wu W. Focus on mast cells in the tumor microenvironment: Current knowledge and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188845. [PMID: 36476563 DOI: 10.1016/j.bbcan.2022.188845] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mast cells (MCs) are crucial cells participating in both innate and adaptive immune processes that play important roles in protecting human health and in the pathophysiology of various diseases, such as allergies, cardiovascular diseases, and autoimmune diseases. In the context of tumors, MCs are a non-negligible population of immune cells in the tumor microenvironment (TME). In most tumor types, MCs accumulate in both the tumor tissue and the surrounding tissue. MCs interact with multiple components of the TME, affecting TME remodeling and the tumor cell fate. However, controversy persists regarding whether MCs contribute to tumor progression or trigger an anti-tumor immune response. This review focuses on the context of the TME to explore the specific properties and functions of MCs and discusses the crosstalk that occurs between MCs and other components of the TME, which affect tumor angiogenesis and lymphangiogenesis, invasion and metastasis, and tumor immunity through different mechanisms. We also anticipate the potential role of MCs in cancer immunotherapy, which might expand upon the success achieved with existing cancer therapies.
Collapse
Affiliation(s)
- Saimeng Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Weiding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Shao X, Hua S, Feng T, Ocansey DKW, Yin L. Hypoxia-Regulated Tumor-Derived Exosomes and Tumor Progression: A Focus on Immune Evasion. Int J Mol Sci 2022; 23:ijms231911789. [PMID: 36233088 PMCID: PMC9570495 DOI: 10.3390/ijms231911789] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells express a high quantity of exosomes packaged with unique cargos under hypoxia, an important characteristic feature in solid tumors. These hypoxic tumor-derived exosomes are, crucially, involved in the interaction of cancer cells with their microenvironment, facilitating not only immune evasion, but increased cell growth and survival, enhanced angiogenesis, epithelial–mesenchymal transition (EMT), therapeutic resistance, autophagy, pre-metastasis, and metastasis. This paper explores the tumor microenvironment (TME) remodeling effects of hypoxic tumor-derived exosome towards facilitating the tumor progression process, particularly, the modulatory role of these factors on tumor cell immune evasion through suppression of immune cells, expression of surface recognition molecules, and secretion of antitumor soluble factor. Tumor-expressed exosomes educate immune effector cells, including macrophages, monocytes, T cells, natural killer (NK) cells, dendritic cells (DCs), γδ T lymphocytes, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), mast cells, and B cells, within the hypoxic TME through the release of factors that regulate their recruitment, phenotype, and function. Thus, both hypoxia and tumor-derived exosomes modulate immune cells, growth factors, cytokines, receptor molecules, and other soluble factors, which, together, collaborate to form the immune-suppressive milieu of the tumor environment. Exploring the contribution of exosomal cargos, such as RNAs and proteins, as indispensable players in the cross-talk within the hypoxic tumor microenvironmental provides a potential target for antitumor immunity or subverting immune evasion and enhancing tumor therapies.
Collapse
|
11
|
Abdo W, Haziri I, Dmerdash M, Alnasser SM, Hakamy A, Ali E, Soliman SA, Abd-Elhafeez HH, Abd-Eldayem AM. Anatabine attenuates ovalbumin-induced asthma via oxidative stress and inflammation mitigation and Nrf2/HO-1 signaling upregulation in rats. Life Sci 2022; 308:120954. [PMID: 36103960 DOI: 10.1016/j.lfs.2022.120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 10/31/2022]
Abstract
AIMS Asthma affects a large number of people worldwide and is characterized by chronic allergic airway inflammation. Anatabine is a natural alkaloid that is structurally similar to nicotine and found in the Solanaceae family of plants, with anti-inflammatory properties. Consequently, this study aimed to evaluate the potential therapeutic effect of anatabine against asthma. MAIN METHODS Ovalbumin was used to induce asthma in rats. Two asthmatic groups were treated with low and high doses of anatabine. KEY FINDINGS Asthmatic animals experienced increased total leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF), bronchitis, and bronchopneumonia associated with mast cell infiltration. Additionally, inducible nitric oxide synthase immunostaining was observed, with decreased pulmonary antioxidant capacity and enzymes and decreased Nrf2 and HO-1 gene expression while increased NFκB-P65 expression. Interestingly, asthmatic animals treated with anatabine at both doses showed dose-dependently decreased inflammatory cells and cytokine levels within BALF reduced inflammation in the airways through decreased mast cell infiltration within lung tissues and increased antioxidant enzymes and Nrf2 and Ho-1 expression levels. SIGNIFICANCE Our results highlight the potential beneficial effect of anatabine against asthma through anti-inflammatory and antioxidant mechanisms. Therefore, anatabine is a promising candidate for pulmonary asthma treatment.
Collapse
Affiliation(s)
- Walied Abdo
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Imer Haziri
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina" Hasan Prishtin", 10000 Pristina, Kosovo.
| | - Mohamed Dmerdash
- Anatomy Department, Faculty of Medicine Al-Azhar University, Cairo 11884, Egypt.
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim, Saudi Arabia.
| | - Ali Hakamy
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Ehab Ali
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Egypt.
| | | | - Ahmed M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| |
Collapse
|
12
|
Targeted Therapy for Hepatocellular Carcinoma: Old and New Opportunities. Cancers (Basel) 2022; 14:cancers14164028. [PMID: 36011021 PMCID: PMC9406380 DOI: 10.3390/cancers14164028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is the most frequent primitive cancer of the liver, accounting for 90% of all recorded cases. HCC is the third most common cause of cancer-related death, with a 5-year survival rate of just 3%. In terms of the advanced stages, systemic treatments have allowed patients to achieve clinical benefits, although the prognosis remains very poor. In the past few decades, new molecular targeted therapies have been developed and clinically evaluated with interesting results. However, on the basis of the poor prognoses and the meager benefits deriving from the available systemic therapies, research into new treatments is extremely necessary. In this review, we focus on the available systemic therapies for advanced HCC, with a look toward the future. Abstract Hepatocellular carcinoma (HCC) is the most frequent primitive cancer of the liver, accounting for 90% of all recorded cases. HCC is the third most common cause of cancer-related death, with a 5-year survival rate of just 3%. In the advanced stages, systemic treatments allow doctors to obtain clinical benefits, although the prognosis remains very poor. In the past few decades, new molecular targeted therapies against receptor tyrosine kinases have been developed and clinically evaluated. Sorafenib was the first oral tyrosine kinase inhibitor (TKI) approved for the treatment of advanced HCC in 2007. Subsequently, other TKIs, including Cabozantinib, Regorafenib, Lenvatinib, and vascular endothelial growth factor receptor (VEGFR) inhibitors such as Ramucirumab and VEGF inhibitors such as Bevacizumab have been approved as first- or second-line treatments. More recently, the combination of immune checkpoint inhibitors and VEGF inhibitors (Atezolizumab plus Bevacizumab) have been analyzed and approved for the treatment of advanced HCC. On the basis of the poor prognoses and the meager benefits deriving from the available systemic therapies, research into new treatments is extremely necessary. In this review, we focus on the available systemic therapies for advanced HCC, with a look toward the future.
Collapse
|
13
|
Zou X, Tang XY, Qu ZY, Sun ZW, Ji CF, Li YJ, Guo SD. Targeting the PDGF/PDGFR signaling pathway for cancer therapy: A review. Int J Biol Macromol 2022; 202:539-557. [PMID: 35074329 DOI: 10.1016/j.ijbiomac.2022.01.113] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs) are expressed in a variety of tumors. Activation of the PDGF/PDGFR signaling pathway is associated with cancer proliferation, metastasis, invasion, and angiogenesis through modulating multiple downstream pathways, including phosphatidylinositol 3 kinase/protein kinase B pathway and mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Therefore, targeting PDGF/PDGFR signaling pathway has been demonstrated to be an effective strategy for cancer therapy, and accordingly, some great progress has been made in this field in the past few decades. This review will focus on the PDGF isoforms and their binding with the related PDGFRs, the PDGF/PDGFR signaling and regulation, and especially present strategies and inhibitors developed for cancer therapy, and the related clinical benefits and side effects.
Collapse
Affiliation(s)
- Xiang Zou
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Xi-Yu Tang
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Zhong-Yuan Qu
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China.
| | - Zhi-Wei Sun
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Chen-Feng Ji
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China
| | - Yan-Jie Li
- Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Shou-Dong Guo
- Engineering Research Center of Natural Antineoplastic Drugs, Ministry of Education, Harbin University of Commerce, 150076, China; School of Pharmacy, Harbin University of Commerce, Harbin 150076, China; Institute of lipid metabolism and Atherosclerosis, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
14
|
Ranieri G, Sablone S, Fazio V, De Ceglia D, Porcelli M, Molinari P, Fucci L, Laface C, Gadaleta CD. A Patient With Stage III Locally Advanced Pancreatic Adenocarcinoma Treated With Intra-Arterial Infusion FOLFIRINOX: Impressive Tumoral Response and Death due to Legionella pneumophila Infection: A Unique Case Report. Front Oncol 2022; 12:877334. [PMID: 35433459 PMCID: PMC9008354 DOI: 10.3389/fonc.2022.877334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Patients affected by pancreatic ductal adenocarcinoma (PDAC) have very poor prognosis, whereby at a follow-up of 5 years, the mortality rate is very similar to the incidence rate. Globally, around 10% of patients are amenable to radical surgery at the time of diagnosis, which represents the only chance of cure or long-term survival for these patients. Almost 40% of patients with PDAC show locally advanced pancreatic cancer (LAPC). LAPC is not a metastatic disease, although it is not amenable to radical surgery. For these patients, systemic induction chemotherapy with intravenous FOLFIRINOX (5-fluorouracil, folic acid, irinotecan, oxaliplatin) regimen is administered, with the aim of conversion to surgery, although the conversion rate remains low, at approximately 10% to 15%. Pancreatic arterial chemotherapy has been explored to overcome the intrinsic tumor pancreatic resistance to systemic chemotherapy, where an intra-arterial port-a-cath is placed by means of interventional oncology techniques under angiographic guidance in the operating theater. Here, we treated a patient with an intra-arterially modified FOLFIRINOX regimen. Three courses were administered, and the patient experienced no adverse events. At the end of the third course, the patient rapidly developed lung failure due to nosocomial Legionella pneumophila infection, despite the impressive pathological tumor response shown in the autopsy report. This is a first and unique report that demonstrates that pancreatic intra-arterial FOLFIRINOX can be safe and efficacious. We believe that this preliminary result will be confirmed in the next patients to be enrolled and that it provides a glimmer of hope for patients with this lethal disease.
Collapse
Affiliation(s)
- Girolamo Ranieri
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
- *Correspondence: Girolamo Ranieri, ;
| | - Sara Sablone
- Section of Legal Medicine, Department of Interdisciplinary Medicine, Bari Policlinico Hospital, University of Bari, Bari, Italy
| | - Vito Fazio
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Dario De Ceglia
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Mariangela Porcelli
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Pasquale Molinari
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Livia Fucci
- Histopatology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS), Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, Istituto di Ricovero a Cura a Carattere Scientifico (IRCCS) Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| |
Collapse
|
15
|
Laface C, Laforgia M, Molinari P, Foti C, Ambrogio F, Gadaleta CD, Ranieri G. Intra-Arterial Infusion Chemotherapy in Advanced Pancreatic Cancer: A Comprehensive Review. Cancers (Basel) 2022; 14:cancers14020450. [PMID: 35053614 PMCID: PMC8774130 DOI: 10.3390/cancers14020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer has a very poor prognosis. The few available therapeutic options are characterized by low efficacy and high toxicity due to the intrinsic chemoresistance of this tumor type. To improve clinical results, some clinical trials have evaluated regional chemotherapy as a treatment option for PC. The pancreatic arterial infusion of chemotherapeutics has the aim of obtaining higher local concentrations of drugs and, at the same time, of limiting systemic toxicity. This therapeutic approach has already been successfully evaluated for the treatment of several types of tumors. Regarding advanced pancreatic cancers, only a few clinical studies have investigated the safety and efficacy of this treatment, with very promising results. Therefore, in this review, we summarize literature data on the clinical approaches to pancreatic arterial drug administration for the treatment of advanced PC to deepen knowledge on this topic. Abstract Advanced pancreatic cancer (PC) has a very poor prognosis due to its chemoresistant nature. Nowadays, only a few therapeutic options are available for PC, and the most effective ones are characterized by low response rates (RRs), short progression-free survival and overall survival, and severe toxicity. To improve clinical results, small series studies have evaluated loco-regional chemotherapy as a treatment option for PC, demonstrating its dose-dependent sensitivity towards the tumor. In fact, pancreatic arterial infusion (PAI) chemotherapy allows higher local concentrations of chemotherapeutic agents, sparing healthy tissues with a lower rate of adverse events compared to systemic chemotherapy. This therapeutic approach has already been evaluated in different types of tumors, especially in primary and metastatic liver cancers, with favourable results. With regard to advanced PC, a few clinical studies have investigated the safety and efficacy of PAI with promising results, especially in terms of RRs compared to systemic chemotherapy. However, clear evidence about its efficacy has not been established yet nor have the underlying mechanisms leading to its success. In this review, we aim to summarize the literature data on the clinical approaches to pancreatic arterial drug administration in terms of techniques, drug pharmacokinetics, and clinical outcomes for advanced PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (P.M.); (C.D.G.)
- Department of Biomedical Sciences and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Pasquale Molinari
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (P.M.); (C.D.G.)
| | - Caterina Foti
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari Aldo Moro, 70124 Bari, Italy; (C.F.); (F.A.)
| | - Francesca Ambrogio
- Department of Biomedical Science and Human Oncology, Dermatological Clinic, University of Bari Aldo Moro, 70124 Bari, Italy; (C.F.); (F.A.)
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (P.M.); (C.D.G.)
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (C.L.); (P.M.); (C.D.G.)
- Correspondence:
| |
Collapse
|