1
|
Xie YQ, Yan FN, Yu LH, Yan HW, Kong YX, Yang ZY. Mechanism of Shashen-Maidong herb pair in treating hepatocellular carcinoma using network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118954. [PMID: 39419302 DOI: 10.1016/j.jep.2024.118954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is among the most prevalent malignant tumors globally and represents a significant public health issue worldwide. Immune cell dysfunction is the crucial factor for the formation of immunosuppression microenvironment of HCC. Glehnia littoralis (A.Gray) F.Schmidt ex Miq. (Shashen) and Ophiopogon japonicus (Thunb.) Ker Gawl. (Maidong) are classic herb pair in traditional Chinese medicine (TCM) of nourishing Yin, and is widely applied in the treatment of HCC and possesses multiple immunomodulatory functions. However, the role of the Shashen-Maidong herb pair (SS-MD) for the management of HCC and the potential mechanisms has not been explicated. AIM OF THE STUDY The purpose of the research is to investigate the potential mechanism of the SS-MD herb pair for the management of HCC. MATERIALS AND METHODS The known components of the SS-MD herb pair were preliminarily identified using UPLC-Q-Orbitrap-MS/MS. The active ingredients of SS-MD herb pair in treating HCC were screened by constructing herb-component-target network, and the key therapeutic targets were explored by constructing a protein-protein interaction (PPI) network. The binding affinity of the key targets and components were validated through molecular docking and molecular dynamics simulations. GO biological function and KEGG pathway analyses were operated to elucidate the potential mechanisms of the SS-MD herb pair for the management of HCC. And the mechanism was verified in the tumor bearing mice model and cell co-culture experiments. RESULTS Network pharmacology prediction revealed 39 active components and 138 targets of the SS-MD herb pair for the treatment of HCC. KEGG analysis mainly focused on Notch signaling pathway and Apoptosis signaling pathway. The targets were enriched in biological functions of lymphocyte effector function and lymphocyte apoptosis. In vivo and in vitro experiments proved that the SS-MD herb pair can improve the proportion of CD8+T cells in the HCC immune microenvironment, regulate its subgroup distribution. SS-MD herb pair promoted CD8+T cells to secrete IL-2, TNF-α, IFN-γ, Granzyme B and Perforin, and inhibited apoptosis by regulating Notch signaling pathway. CONCLUSIONS This study identified the key components, targets, and signaling pathways of the SS-MD herb pair, confirm that SS-MD herb pair play an immunomodulatory role in treating HCC, provides theoretical support for the collaborative treatment of HCC with TCM.
Collapse
Affiliation(s)
- Yu-Qing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Feng-Na Yan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Li-Hua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Hui-Wen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Ya-Xian Kong
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| | - Zhi-Yun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
| |
Collapse
|
2
|
Banerjee A, Farci P. Fibrosis and Hepatocarcinogenesis: Role of Gene-Environment Interactions in Liver Disease Progression. Int J Mol Sci 2024; 25:8641. [PMID: 39201329 PMCID: PMC11354981 DOI: 10.3390/ijms25168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The liver is a complex organ that performs vital functions in the body. Despite its extraordinary regenerative capacity compared to other organs, exposure to chemical, infectious, metabolic and immunologic insults and toxins renders the liver vulnerable to inflammation, degeneration and fibrosis. Abnormal wound healing response mediated by aberrant signaling pathways causes chronic activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM), leading to hepatic fibrosis and cirrhosis. Fibrosis plays a key role in liver carcinogenesis. Once thought to be irreversible, recent clinical studies show that hepatic fibrosis can be reversed, even in the advanced stage. Experimental evidence shows that removal of the insult or injury can inactivate HSCs and reduce the inflammatory response, eventually leading to activation of fibrolysis and degradation of ECM. Thus, it is critical to understand the role of gene-environment interactions in the context of liver fibrosis progression and regression in order to identify specific therapeutic targets for optimized treatment to induce fibrosis regression, prevent HCC development and, ultimately, improve the clinical outcome.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Transfusion Transmitted Diseases, ICMR-National Institute of Immunohaematology, Mumbai 400012, Maharashtra, India;
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Li C, Zhang ED, Ye Y, Xiao Z, Huang H, Zeng Z. Association of mitochondrial phosphoenolpyruvate carboxykinase with prognosis and immune regulation in hepatocellular carcinoma. Sci Rep 2024; 14:14051. [PMID: 38890507 PMCID: PMC11189538 DOI: 10.1038/s41598-024-64907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Mitochondrial phosphoenolpyruvate carboxykinase (PCK2), a mitochondrial isoenzyme, supports the growth of cancer cells under glucose deficiency conditions in vitro. This study investigated the role and potential mechanism of PCK2 in the occurrence and development of Hepatocellular carcinoma (HCC). The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and other databases distinguish the expression of PCK2 and verified by qRT-PCR and Western blotting. Kaplan-Meier was conducted to assess PCK2 survival in HCC. The potential biological function of PCK2 was verified by enrichment analysis and gene set enrichment analysis (GSEA). The correlation between PCK2 expression and immune invasion and checkpoint was found by utilizing Tumor Immune Estimation Resource (TIMER). Lastly, the effects of PCK2 on the proliferation and metastasis of hepatocellular carcinoma cells were evaluated by cell tests, and the expressions of Epithelial mesenchymal transformation (EMT) and apoptosis related proteins were detected. PCK2 is down-regulated in HCC, indicating a poor prognosis. PCK2 gene mutation accounted for 1.3% of HCC. Functional enrichment analysis indicated the potential of PCK2 as a metabolism-related therapeutic target. Subsequently, we identified several signaling pathways related to the biological function of PCK2. The involvement of PCK2 in immune regulation was verified and key immune checkpoints were predicted. Ultimately, after PCK2 knockdown, cell proliferation and migration were significantly increased, and N-cadherin and vimentin expression were increased. PCK2 has been implicated in immune regulation, proliferation, and metastasis of hepatocellular carcinoma, and is emerging as a novel predictive biomarker and metabolic-related clinical target.
Collapse
Affiliation(s)
| | | | - Youzhi Ye
- Kunming Medical University, Kunming, China
| | | | - Hanfei Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| | - Zhong Zeng
- The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Wang W, Li G, Ma J, Fan X, Lu J, Sun Q, Yao J, He Q. Microvascular rarefaction caused by the NOTCH signaling pathway is a key cause of TKI-apatinib-induced hypertension and cardiac damage. Front Pharmacol 2024; 15:1346905. [PMID: 38405666 PMCID: PMC10885812 DOI: 10.3389/fphar.2024.1346905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
With the advancement of tumour-targeted therapy technology, the survival of cancer patients has continued to increase, and cardiovascular events have gradually become an important cause of death in cancer patients. This phenomenon occurs due to adverse cardiovascular reactions caused by the cardiovascular toxicity of antitumour therapy. Moreover, the increase in the proportion of elderly patients with cancer and cardiovascular diseases is due to the extension of life expectancy. Hypertension is the most common cardiovascular side effect of small molecule tyrosine kinase inhibitors (TKIs). The increase in blood pressure induced by TKIs and subsequent cardiovascular complications and events affect the survival and quality of life of patients and partly offset the benefits of antitumour therapy. Many studies have confirmed that in the pathogenesis of hypertension, arterioles and capillary thinness are involved in its occurrence and development. Our previous findings showing that apatinib causes microcirculation rarefaction of the superior mesenteric artery and impaired microvascular growth may inspire new therapeutic strategies for treating hypertension. Thus, by restoring microvascular development and branching patterns, total peripheral resistance and blood pressure are reduced. Therefore, exploring the key molecular targets of TKIs that inhibit the expression of angiogenic factors and elucidating the specific molecular mechanism involved are key scientific avenues for effectively promoting endothelial cell angiogenesis and achieving accurate repair of microcirculation injury in hypertension patients.
Collapse
Affiliation(s)
- WenJuan Wang
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Guodong Li
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jie Ma
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Xin Fan
- Department of Hypertension Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianzhong Lu
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qiyin Sun
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Jiafang Yao
- Department of Cardiovascular Center, The First People’s Hospital of Huzhou City, Huzhou, China
| | - Qingjian He
- Department of Breast and Thyroid Surgery, The First People’s Hospital of Huzhou City, Huzhou, China
| |
Collapse
|
5
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
6
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
7
|
Research progress on the role of cholesterol in hepatocellular carcinoma. Eur J Pharmacol 2022; 938:175410. [DOI: 10.1016/j.ejphar.2022.175410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
|
8
|
Niu Y, Liu Z, Wang M, Du K, Chang K, Ding Y. TMT-based quantitative proteomics analysis reveals the role of Notch signaling in FAdV-4-infected LMH cell. Front Microbiol 2022; 13:988259. [PMID: 36187945 PMCID: PMC9520525 DOI: 10.3389/fmicb.2022.988259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Fowl adenovirus serotype 4 (FAdV-4) is recognized as a pathogen that causes hydropericardium syndrome. Irrespective of the pathway used by the virus to invade the chicken, the pathological characteristics of the disease include degeneration and necrosis of hepatocytes, formation of intranuclear inclusions, as well as inflammatory cell infiltration. Liver dysfunction constitutes one of the critical factors leading to death. Therefore, it is vital to investigate the virus-mediated severe pathological liver damage to further understand the pathogenesis of FAdV-4. Here, proteomics, a tandem mass tag (TMT)-based approach to directly analyze protein expression, was used to determine the protein expression during FAdV-4 proliferation in leghorn male hepatoma (LMH) cells. We identified 177 differentially expressed proteins associated with various biological processes and pathways. The functional enrichment analysis revealed that FAdV-4 could downregulate some signaling pathways in LMH cells, including NOD-like receptor signaling, RIG-I-like receptor signaling, NF-κB signaling, TNF signaling pathway, and Notch signaling, FoxO signaling, PI3K-Akt signaling, and autophagy. The results of proteomics screening suggested an association between FAdV-4 infection and Notch signaling in LMH in vitro, indicating that Notch signaling regulated the expression of inflammatory cytokines and interferons but not viral replication in LMH cells. These data contributed to the understanding of the immunopathogenesis and inflammopathogenesis of FAdV-4 infection and also provided valuable information for the further analysis of the molecular mechanisms underlying viral pathogenesis.
Collapse
|
9
|
Vitale G, Mattiaccio A, Conti A, Turco L, Seri M, Piscaglia F, Morelli MC. Genetics in Familial Intrahepatic Cholestasis: Clinical Patterns and Development of Liver and Biliary Cancers: A Review of the Literature. Cancers (Basel) 2022; 14:cancers14143421. [PMID: 35884482 PMCID: PMC9322180 DOI: 10.3390/cancers14143421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The family of inherited intrahepatic cholestasis includes autosomal recessive cholestatic rare diseases of childhood involved in bile acids secretion or bile transport defects. Specific genetic pathways potentially cause many otherwise unexplained cholestasis or hepatobiliary tumours in a healthy liver. Lately, next-generation sequencing and whole-exome sequencing have improved the diagnostic procedures of familial intrahepatic cholestasis (FIC), as well as the discovery of several genes responsible for FIC. Moreover, mutations in these genes, even in the heterozygous status, may be responsible for cryptogenic cholestasis in both young and adults. Mutations in FIC genes can influence serum and hepatic levels of bile acids. Experimental studies on the NR1H4 gene have shown that high bile acids concentrations cause excessive production of inflammatory cytokines, resistance to apoptosis, and increased cell regeneration, all risk conditions for developing hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA). NR1H4 gene encodes farnesoid X-activated receptor having a pivotal role in bile salts synthesis. Moreover, HCC and CCA can emerge in patients with several FIC genes such as ABCB11, ABCB4 and TJP2. Herein, we reviewed the available data on FIC-related hepatobiliary cancers, reporting on genetics to the pathophysiology, the risk factors and the clinical presentation.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
- Correspondence:
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.M.); (A.C.); (M.S.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.T.); (M.C.M.)
| |
Collapse
|
10
|
Wei J, Hou S, Li M, Yao X, Wang L, Zheng Z, Mo H, Chen Y, Yuan X. Necroptosis-Related Genes Signatures Identified Molecular Subtypes and Underlying Mechanisms in Hepatocellular Carcinoma. Front Oncol 2022; 12:875264. [PMID: 35912224 PMCID: PMC9326098 DOI: 10.3389/fonc.2022.875264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAlthough emerging evidence supports the relationship between necroptosis (NEC) related genes and hepatocellular carcinoma (HCC), the contribution of these necroptosis-related genes to the development, prognosis, and immunotherapy of HCC is unclear.MethodsThe expression of genes and relevant clinical information were downloaded from TCGA-LIHC, LIRI-JP, GSE14520/NCI, GSE36376, GSE76427, GSE20140, GSE27150, and IMvigor210 datasets. Next, we used an unsupervised clustering method to assign the samples into phenotype clusters base on 15 necroptosis-related genes. Subsequently, we constructed a NEC score based on NEC phenotype-related prognostic genes to quantify the necroptosis related subtypes of individual patients.ResultsWe divided the samples into the high and low NEC score groups, and the high NEC score showed a poor prognosis. Simultaneously, NEC score is an effective and stable model and had a good performance in predicting the prognosis of HCC patients. A high NEC score was characterized by activation of the stroma and increased levels of immune infiltration. A high NEC score was also related to low expression of immune checkpoint molecules (PD-1/PD-L1). Importantly, the established NEC score would contribute to predicting the response to anti-PD-1/L1 immunotherapy.ConclusionsOur study provide a comprehensive analysis of necroptosis-related genes in HCC. Stratification based on the NEC score may enable HCC patients to benefit more from immunotherapy and help identify new cancer treatment strategies.
Collapse
Affiliation(s)
- Jianguo Wei
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shuqian Hou
- Department of Pathology, Maoming People’s Hospital, Maoming, China
| | - Minhua Li
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xiaofei Yao
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Li Wang
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhen Zheng
- Department of Pathology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haiqian Mo
- Department of General Medicine, Maoming People’s Hospital, Maoming, China
| | - Yu Chen
- School of Science, Wuhan University of Technology, Wuhan, China
| | - Xiaolu Yuan
- Department of Pathology, Maoming People’s Hospital, Maoming, China
- *Correspondence: Xiaolu Yuan,
| |
Collapse
|
11
|
Xu Y, Liao W, Luo Q, Yang D, Pan M. Histone Acetylation Regulator-Mediated Acetylation Patterns Define Tumor Malignant Pathways and Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:761046. [PMID: 35145517 PMCID: PMC8821108 DOI: 10.3389/fimmu.2022.761046] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Histone acetylation modification is one of the most common epigenetic methods used to regulate chromatin structure, DNA repair, and gene expression. Existing research has focused on the importance of histone acetylation in regulating tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not explored the potential roles and interactions of histone acetylation regulators in TME cell infiltration, drug sensitivity, and immunotherapy. Methods The mRNA expression and genetic alterations of 36 histone acetylation regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The unsupervised clustering method was used to identify the histone acetylation patterns. Then, based on their differentially expressed genes (DEGs), an HAscore model was constructed to quantify the histone acetylation patterns and related subtypes of individual samples. Lastly, the relationship between HAscore and transcription background, tumor clinical features, characteristics of TME, drug response, and efficacy of immunotherapy were analyzed. Results We identified three histone acetylation patterns characterized by high, medium, and low HAscore. Patients with HCC in the high HAscore group experienced worse overall survival time, and the cancer-related malignant pathways were more active in the high HAscore group, comparing to the low HAscore group. The high HAscore group was characterized by an immunosuppressive subtype because of the high infiltration of immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the response ratio was significantly higher in the low HAscore group. Conclusion To the best of our knowledge, our study is the first to provide a comprehensive analysis of 36 histone acetylation regulators in HCC. We found close correlations between histone acetylation patterns and tumor malignant pathways and TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and immunotherapy. This work highlights the interactions and potential clinical utility of histone acetylation regulators in treatment of HCC and improving patient outcomes.
Collapse
Affiliation(s)
- Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Luo
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Dinghua Yang
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| |
Collapse
|
12
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
13
|
Hepatic Cancer Stem Cells: Molecular Mechanisms, Therapeutic Implications, and Circulating Biomarkers. Cancers (Basel) 2021; 13:cancers13184550. [PMID: 34572776 PMCID: PMC8472624 DOI: 10.3390/cancers13184550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. HCC is associated with multiple risk factors and is characterized by a marked tumor heterogeneity that makes its molecular classification difficult to apply in the clinics. The lack of circulating biomarkers for the diagnosis, prognosis, and prediction of response to treatments further undermines the possibility of developing personalized therapies. Accumulating evidence affirms the involvement of cancer stem cells (CSCs) in tumor heterogeneity, recurrence, and drug resistance. Owing to the contribution of CSCs to treatment failure, there is an urgent need to develop novel therapeutic strategies targeting, not only the tumor bulk, but also the CSC subpopulation. Clarification of the molecular mechanisms influencing CSC properties, and the identification of their functional roles in tumor progression, may facilitate the discovery of novel CSC-based therapeutic targets to be used alone, or in combination with current anticancer agents, for the treatment of HCC. Here, we review the driving forces behind the regulation of liver CSCs and their therapeutic implications. Additionally, we provide data on their possible exploitation as prognostic and predictive biomarkers in patients with HCC.
Collapse
|