1
|
Olivares-Abril J, Joha J, Lee JY, Davis I. Optimization of hybridization chain reaction for imaging single RNA molecules in Drosophila larvae. Fly (Austin) 2024; 18:2409968. [PMID: 39351922 PMCID: PMC11446410 DOI: 10.1080/19336934.2024.2409968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In situ hybridization techniques are powerful methods for exploring gene expression in a wide range of biological contexts, providing spatial information that is most often lost in traditional biochemical techniques. However, many in situ hybridization methods are costly and time-inefficient, particularly for screening-based projects that follow on from single-cell RNA sequencing data, which rely on of tens of custom-synthetized probes against each specific RNA of interest. Here we provide an optimized pipeline for Hybridization Chain Reaction (HCR)-based RNA visualization, including an open-source code for optimized probe design. Our method achieves high specificity and sensitivity with the option of multiplexing using only five pairs of probes, which greatly lowers the cost and time of the experiment. These features of our HCR protocol are particularly useful and convenient for projects involving screening several genes at medium throughput, especially as the method include an amplification step, which makes the signal readily visible at low magnification imaging.
Collapse
Affiliation(s)
| | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jeffrey Y Lee
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
2
|
Lee JY, Gala DS, Kiourlappou M, Olivares-Abril J, Joha J, Titlow JS, Teodoro RO, Davis I. Murine glial protrusion transcripts predict localized Drosophila glial mRNAs involved in plasticity. J Cell Biol 2024; 223:e202306152. [PMID: 39037431 PMCID: PMC11262410 DOI: 10.1083/jcb.202306152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.
Collapse
Affiliation(s)
- Jeffrey Y. Lee
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dalia S. Gala
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Rita O. Teodoro
- iNOVA4Health, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Prasun P, Patra K. EEF2-Related Neurodevelopmental Disorder Is Clinically Recognizable. Mol Syndromol 2024; 15:403-408. [PMID: 39359947 PMCID: PMC11444702 DOI: 10.1159/000538059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction EEF2 encodes eukaryotic elongation factor 2 which catalyzes the elongation phase of protein translation. It is ubiquitously expressed and important for neuronal function. EEF2 was first associated with adult-onset spinocerebellar ataxia type 26 (SCA26). A novel neurodevelopmental disorder associated with de novo heterozygous variants in EEF2 has been described. Only 6 patients have been described in the literature thus far. A 9-year-old child with de novo novel missense variant is described here. EEF2-related neurodevelopmental disorder appears to be clinically recognizable. Case Presentation A nine-year-old male with autism spectrum disorder was referred for genetic evaluation. On examination, he had relative macrocephaly and frontal prominence. Whole exome sequencing revealed a de novo c.1225 C>T: p. (R409W) variant in exon 9 of the EEF2 gene (NM_001961.3). Discussion A comparison of clinical findings suggests that relative macrocephaly/macrocephaly and prominent forehead are consistent and easily identifiable clinical features of EEF2-related neurodevelopmental disorder. The clinical spectrum of this disorder is still emerging. EEF2-related neurodevelopmental disorder should be considered in a child with autism, developmental delays/intellectual disability, macrocephaly/relative macrocephaly, and frontal prominence.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Pediatrics, West Virginia University Medicine, Morgantown, WV, USA
| | - Kamakhya Patra
- Department of Pediatrics, West Virginia University Medicine, Morgantown, WV, USA
| |
Collapse
|
4
|
Avila-Gutierrez K, Slaoui L, Alvear-Perez R, Kozlowski E, Oudart M, Augustin E, Claveau C, Mailly P, Monnet H, Mignon V, Saubaméa B, Boulay AC, Cohen-Salmon M. Dynamic local mRNA localization and translation occurs during the postnatal molecular maturation of perivascular astrocytic processes. Glia 2024; 72:777-793. [PMID: 38189217 DOI: 10.1002/glia.24503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
Astrocytes are highly ramified and send out perivascular processes (PvAPs) that entirely sheathe the brain's blood vessels. PvAPs are equipped with an enriched molecular repertoire that sustains astrocytic regulatory functions at the vascular interface. In the mouse, PvAP development starts after birth and is essentially complete by postnatal day (P) 15. Progressive molecular maturation also occurs over this period, with the acquisition of proteins enriched in PvAPs. The mechanisms controlling the development and molecular maturation of PvAPs have not been extensively characterized. We reported previously that mRNAs are distributed unequally in mature PvAPs and are locally translated. Since dynamic mRNA localization and local translation influence the cell's polarity, we hypothesized that they might sustain the postnatal maturation of PvAPs. Here, we used a combination of molecular biology and imaging approaches to demonstrate that the development of PvAPs is accompanied by the transport of mRNA and polysomal mRNA into PvAPs, the development of a rough endoplasmic reticulum (RER) network and Golgi cisternae, and local translation. By focusing on genes and proteins that are selectively or specifically expressed in astrocytes, we characterized the developmental profile of mRNAs, polysomal mRNAs and proteins in PvAPs from P5 to P60. We found that some polysomal mRNAs polarized progressively towards the PvAPs. Lastly, we found that expression and localization of mRNAs in developing PvAPs is perturbed in a mouse model of megalencephalic leukoencephalopathy with subcortical cysts. Our results indicate that dynamic mRNA localization and local translation influence the postnatal maturation of PvAPs.
Collapse
Affiliation(s)
- Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Leila Slaoui
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Rodrigo Alvear-Perez
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Esther Kozlowski
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Marc Oudart
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Emma Augustin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Camille Claveau
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Héloïse Monnet
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Virginie Mignon
- INSERM, CNRS, P-MIM, Plateforme d'Imagerie Cellulaire et Moléculaire (PICMO), Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- INSERM, CNRS, P-MIM, Plateforme d'Imagerie Cellulaire et Moléculaire (PICMO), Université Paris Cité, Paris, France
- Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
5
|
Reisbitzer A, Krauß S. The dynamic world of RNA: beyond translation to subcellular localization and function. Front Genet 2024; 15:1373899. [PMID: 38533205 PMCID: PMC10963542 DOI: 10.3389/fgene.2024.1373899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Affiliation(s)
| | - Sybille Krauß
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| |
Collapse
|
6
|
Ali Z, Godoy-Corchuelo JM, Martins-Bach AB, Garcia-Toledo I, Fernández-Beltrán LC, Nair RR, Spring S, Nieman BJ, Jimenez-Coca I, Bains RS, Forrest H, Lerch JP, Miller KL, Fisher EMC, Cunningham TJ, Corrochano S. Mutation in the FUS nuclear localisation signal domain causes neurodevelopmental and systemic metabolic alterations. Dis Model Mech 2023; 16:dmm050200. [PMID: 37772684 PMCID: PMC10642611 DOI: 10.1242/dmm.050200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.
Collapse
Affiliation(s)
- Zeinab Ali
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Juan M. Godoy-Corchuelo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Aurea B. Martins-Bach
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Irene Garcia-Toledo
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Luis C. Fernández-Beltrán
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Remya R. Nair
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| | - Shoshana Spring
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Brian J. Nieman
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON M57 3H7, Canada
| | - Irene Jimenez-Coca
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
| | - Rasneer S. Bains
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Hamish Forrest
- Mary Lyon Centre at MRC Harwell, Didcot, Oxfordshire OX11 ORD, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9D, UK
| | - Elizabeth M. C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas J. Cunningham
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London W1W 7FF, UK
| | - Silvia Corrochano
- Neurological Disorders Group, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdiSSC), Madrid 28040, Spain
- Mammalian Genetics Unit, MRC Harwell Institute, Didcot, Oxfordshire OX11 ORD, UK
| |
Collapse
|
7
|
Vecchiarelli HA, Tremblay MÈ. Local translation in microglial processes. Nat Neurosci 2023:10.1038/s41593-023-01370-z. [PMID: 37311948 DOI: 10.1038/s41593-023-01370-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, British Columbia, Canada.
- Départment de Médicine Moléculaire, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
8
|
Oudart M, Avila-Gutierrez K, Moch C, Dossi E, Milior G, Boulay AC, Gaudey M, Moulard J, Lombard B, Loew D, Bemelmans AP, Rouach N, Chapat C, Cohen-Salmon M. The ribosome-associated protein RACK1 represses Kir4.1 translation in astrocytes and influences neuronal activity. Cell Rep 2023; 42:112456. [PMID: 37126448 DOI: 10.1016/j.celrep.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/10/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023] Open
Abstract
The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.
Collapse
Affiliation(s)
- Marc Oudart
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Katia Avila-Gutierrez
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clara Moch
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Giampaolo Milior
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Anne-Cécile Boulay
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Mathis Gaudey
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Bérangère Lombard
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Damarys Loew
- CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, University PSL, Paris, France
| | - Alexis-Pierre Bemelmans
- CEA, Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France
| | - Clément Chapat
- Laboratoire de Biochimie, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology, College de France, CNRS, INSERM, Université PSL, Labex Memolife, Paris, France.
| |
Collapse
|
9
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
10
|
D’Ambrosi N, Cozzolino M, Apolloni S. The Contribution of Non-Neuronal Cells in Neurodegeneration: From Molecular Pathogenesis to Therapeutic Challenges. Cells 2022; 11:193. [PMID: 35053309 PMCID: PMC8774258 DOI: 10.3390/cells11020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Neuron loss occurring in neurodegenerative diseases represents just the final step in a series of events involving several cell types, other than neurons, that actively contribute to the overall pathogenic mechanisms by establishing harmful non-cell autonomous effects [...].
Collapse
Affiliation(s)
- Nadia D’Ambrosi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - Savina Apolloni
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
11
|
Gamarra M, de la Cruz A, Blanco-Urrejola M, Baleriola J. Local Translation in Nervous System Pathologies. Front Integr Neurosci 2021; 15:689208. [PMID: 34276318 PMCID: PMC8279726 DOI: 10.3389/fnint.2021.689208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dendrites and axons can extend dozens to hundreds of centimeters away from the cell body so that a single neuron can sense and respond to thousands of stimuli. Thus, for an accurate function of dendrites and axons the neuronal proteome needs to be asymmetrically distributed within neurons. Protein asymmetry can be achieved by the transport of the protein itself or the transport of the mRNA that is then translated at target sites in neuronal processes. The latter transport mechanism implies local translation of localized mRNAs. The role of local translation in nervous system (NS) development and maintenance is well established, but recently there is growing evidence that this mechanism and its deregulation are also relevant in NS pathologies, including neurodegenerative diseases. For instance, upon pathological signals disease-related proteins can be locally synthesized in dendrites and axons. Locally synthesized proteins can exert their effects at or close to the site of translation, or they can be delivered to distal compartments like the nucleus and induce transcriptional responses that lead to neurodegeneration, nerve regeneration and other cell-wide responses. Relevant key players in the process of local protein synthesis are RNA binding proteins (RBPs), responsible for mRNA transport to neurites. Several neurological and neurodegenerative disorders, including amyotrophic lateral sclerosis or spinal motor atrophy, are characterized by mutations in genes encoding for RBPs and consequently mRNA localization and local translation are impaired. In other diseases changes in the local mRNA repertoire and altered local protein synthesis have been reported. In this review, we will discuss how deregulation of localized translation at different levels can contribute to the development and progression of nervous system pathologies.
Collapse
Affiliation(s)
- María Gamarra
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Aida de la Cruz
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Maite Blanco-Urrejola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Jimena Baleriola
- Laboratory of Local Translation in Neurons and Glia, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Biología Celular e Histología, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|