1
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2025; 45:164-213. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
2
|
Tantra T, Rahaman T A A, Nandini, Chaudhary S. Therapeutic role of NLRP3 inflammasome inhibitors against Alzheimer's disease. Bioorg Chem 2024; 153:107912. [PMID: 39504636 DOI: 10.1016/j.bioorg.2024.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a vital role in regulating inflammatory signaling and the innate immune system. Activation of NLRP3 by accumulation of Aβ leads to its oligomerization and the activation of caspase-1, resulting in the secretion of pro-cytokines such as IL-18 and IL-1β. These pro-cytokines can contribute to cognitive impairment and neurodegeneration. The activation of NLRP3 is associated with neuroinflammation in animal models of Alzheimer's disease (AD). Therefore, the NLRP3 inflammasome is considered a potential therapeutic target for AD. Various natural and synthetic molecules have gained attention as NLRP3 inhibitors against AD. In this review, we will summarize the sources, chemical structures, synthesis, and biological activity of NLRP3 inhibitors as anti-Alzheimer's agents. Additionally, we will critically analyze the structure-activity relationship (SAR) of NLRP3 inhibitors. This detailed examination of the SAR-based investigation of NLRP3 inhibitors and their derivatives offers insights into the design and development of novel NLRP3 inhibitors as anti-Alzheimer's agents. It is expected that this review will assist researchers in developing innovative and effective NLRP3 inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Tanmoy Tantra
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Abdul Rahaman T A
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Nandini
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sandeep Chaudhary
- Laboratory of Bioactive Heterocycles and Catalysis (BHC Lab), Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
3
|
Kazi SH, Sheraz MA, Anwar Z, Musharraf SG, Ahmed S, Bano R, Mirza T, Heo K, Na JH. Photolysis of tolfenamic acid in aqueous and organic solvents: a kinetic study. RSC Adv 2024; 14:21383-21397. [PMID: 38979457 PMCID: PMC11228578 DOI: 10.1039/d4ra01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug that was studied for its photodegradation in aqueous (pH 2.0-12.0) and organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol). TA follows first-order kinetics for its photodegradation, and the apparent first-order rate constants (k obs) are in the range of 0.65 (pH 12.0) to 6.94 × 10-2 (pH 3.0) min-1 in aqueous solution and 3.28 (1-butanol) to 7.69 × 10-4 (acetonitrile) min-1 in organic solvents. The rate-pH profile for TA photodegradation is an inverted V (∧) or V-top shape, indicating that the cationic form is more susceptible to acid hydrolysis than the anionic form of TA, which is less susceptible to alkaline hydrolysis. The fluorescence behavior of TA also exhibits a V-top-shaped curve, indicating maximum fluorescence intensity at pH 3.0. TA is highly stable at a pH range of 5.0-7.0, making it suitable for formulation development. In organic solvents, the photodegradation rate of TA increases with the solvent's dielectric constant and solvent acceptor number, indicating solute-solvent interactions. The values of k obs decreased with increased viscosity of the solvents due to diffusion-controlled processes. The correlation between k obs versus ionization potential and solvent density has also been established. A total of 17 photoproducts have been identified through LC-MS, of which nine have been reported for the first time. It has been confirmed through electron spin resonance (ESR) spectrometry that the excited singlet state of TA is converted into an excited triplet state through intersystem crossing, which results in an increased rate of photodegradation in acetonitrile.
Collapse
Affiliation(s)
- Sadia Hafeez Kazi
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Syed Ghulam Musharraf
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Raheela Bano
- Dow College of Pharmacy, Dow University of Health Sciences (Ojha Campus) Karachi Pakistan
| | - Tania Mirza
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Kyuyoung Heo
- Reliability Assessment Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
4
|
Niazi SK, Magoola M, Mariam Z. Innovative Therapeutic Strategies in Alzheimer's Disease: A Synergistic Approach to Neurodegenerative Disorders. Pharmaceuticals (Basel) 2024; 17:741. [PMID: 38931409 PMCID: PMC11206655 DOI: 10.3390/ph17060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) remains a significant challenge in the field of neurodegenerative disorders, even nearly a century after its discovery, due to the elusive nature of its causes. The development of drugs that target multiple aspects of the disease has emerged as a promising strategy to address the complexities of AD and related conditions. The immune system's role, particularly in AD, has gained considerable interest, with nanobodies representing a new frontier in biomedical research. Advances in targeting antibodies against amyloid-β (Aβ) and using messenger RNA for genetic translation have revolutionized the production of antibodies and drug development, opening new possibilities for treatment. Despite these advancements, conventional therapies for AD, such as Cognex, Exelon, Razadyne, and Aricept, often have limited long-term effectiveness, underscoring the need for innovative solutions. This necessity has led to the incorporation advanced technologies like artificial intelligence and machine learning into the drug discovery process for neurodegenerative diseases. These technologies help identify therapeutic targets and optimize lead compounds, offering a more effective approach to addressing the challenges of AD and similar conditions.
Collapse
Affiliation(s)
| | | | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry CV1 5FB, UK
| |
Collapse
|
5
|
Salmanzadeh H, Halliwell RF. Antiseizure properties of fenamate NSAIDs determined in mature human stem-cell derived neuroglial circuits. Front Pharmacol 2024; 15:1385523. [PMID: 38828453 PMCID: PMC11141243 DOI: 10.3389/fphar.2024.1385523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Repeated and uncontrolled seizures in epilepsy result in brain cell loss and neural inflammation. Current anticonvulsants primarily target ion channels and receptors implicated in seizure activity. Identification of neurotherapeutics that can inhibit epileptiform activity and reduce inflammation in the brain may offer significant benefits in the long-term management of epilepsy. Fenamates are unique because they are both non-steroidal anti-inflammatory drugs (NSAIDs) and highly subunit selective modulators of GABAA receptors. In the current study we have investigated the hypothesis that fenamates have antiseizure properties using mature human stem cell-derived neuro-glia cell cultures, maintained in long-term culture, and previously shown to be sensitive to first, second and third generation antiepileptics. Mefenamic acid, flufenamic acid, meclofenamic acid, niflumic acid, and tolfenamic acid (each tested at 10-100 μM) attenuated 4-aminopyridine (4-AP, 100 μM) evoked epileptiform activity in a dose-dependent fashion. These actions were as effective diazepam (3-30 μM) and up to 200 times more potent than phenobarbital (300-1,000 μM). The low (micromolar) concentrations of fenamates that inhibited 4-AP evoked epileptiform activity correspond to those reported to potentiate GABAA receptor function. In contrast, the fenamates had no effect on neural spike amplitudes, indicating that their antiseizure actions did not result from inhibition of sodium-channels. The antiseizure actions of fenamates were also not replicated by either of the two non-fenamate NSAIDs, ibuprofen (10-100 μM) or indomethacin (10-100 μM), indicating that inhibition of cyclooxygenases is not the mechanism through which fenamates have anticonvulsant properties. This study therefore shows for the first time, using functionally mature human stem cell-derived neuroglial circuits, that fenamate NSAIDs have powerful antiseizure actions independent of, and in addition to their well-established anti-inflammatory properties, suggesting these drugs may provide a novel insight and new approach to the treatment of epilepsy in the future.
Collapse
Affiliation(s)
| | - Robert F. Halliwell
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States
| |
Collapse
|
6
|
Kapuścińska D, Narajczyk M, Liakh I, Wielgomas B, Aksmann A. Nabumetone and flufenamic acid pose a serious risk to aquatic plants: A study with Chlamydomonas reinhardtii as a model organism. CHEMOSPHERE 2024; 349:140853. [PMID: 38052310 DOI: 10.1016/j.chemosphere.2023.140853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
The aquatic environment is constantly under threat due to the release of numerous pollutants. Among them, pharmaceuticals constitute a huge and diverse group. Non-steroidal anti-inflammatory drugs (NSAIDs) are increasingly found in water bodies, but knowledge about their potential toxicity is still low. In particular, there is a lack of information about their influences on aquatic plants and algae. We estimated the susceptibility of the microalgae Chlamydomonas reinhardtii to nabumetone (NBT) and flufenamic acid (FFA), focusing on photosynthesis. Due to the differences in the structures of these compounds, it was assumed that these drugs would have different toxicities to the tested green algae. The hypothesis was confirmed by determining the effective concentration values, the intensity of photosynthesis, the intensity of dark respiration, the contents of photosynthetic pigments, the fluorescence of chlorophyll a in vivo (OJIP test), and cell ultrastructure analysis. Assessment of the toxicity of the NSAIDs was extended by the calculation of an integrated biomarker response index (IBR), which is a valuable tool in ecotoxicological studies. The obtained results indicate an over six times higher toxicity of NBT compared to FFA. After analysis of the chlorophyll a fluorescence in vivo, it was found that NBT inhibited electron transport beyond the PS II. FFA, unlike NBT, lowered the intensity of photosynthesis, probably transforming some reaction centers into "silent centers", which dissipate energy as heat. The IBR estimated based on photosynthetic parameters suggests that the toxic effect of FFA results mainly from photosynthesis disruption, whereas NBT significantly affects other cellular processes. No significant alteration in the ultrastructure of treated cells could be seen, except for changes in starch grain number and autophagic vacuoles that appeared in FFA-treated cells. To the best of our knowledge, this is the first work reporting the toxic effects of NBT and FFA on unicellular green algae.
Collapse
Affiliation(s)
- Dominika Kapuścińska
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Ivan Liakh
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Bartosz Wielgomas
- Department of Toxicology, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
7
|
Hill J, Shalaby KE, Bihaqi SW, Alansi BH, Barlock B, Parang K, Thompson R, Ouararhni K, Zawia NH. Tolfenamic Acid Derivatives: A New Class of Transcriptional Modulators with Potential Therapeutic Applications for Alzheimer's Disease and Related Disorders. Int J Mol Sci 2023; 24:15216. [PMID: 37894896 PMCID: PMC10607430 DOI: 10.3390/ijms242015216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The field of Alzheimer's disease (AD) has witnessed recent breakthroughs in the development of disease-modifying biologics and diagnostic markers. While immunotherapeutic interventions have provided much-awaited solutions, nucleic acid-based tools represent other avenues of intervention; however, these approaches are costly and invasive, and they have serious side effects. Previously, we have shown in AD animal models that tolfenamic acid (TA) can lower the expression of AD-related genes and their products and subsequently reduce pathological burden and improve cognition. Using TA as a scaffold and the zinc finger domain of SP1 as a pharmacophore, we developed safer and more potent brain-penetrating analogs that interfere with sequence-specific DNA binding at transcription start sites and predominantly modulate the expression of SP1 target genes. More importantly, the proteome of treated cells displayed ~75% of the downregulated products as SP1 targets. Specific levels of SP1-driven genes and AD biomarkers such as amyloid precursor protein (APP) and Tau proteins were also decreased as part of this targeted systemic response. These small molecules, therefore, offer a viable alternative to achieving desired therapeutic outcomes by interfering with both amyloid and Tau pathways with limited off-target systemic changes.
Collapse
Affiliation(s)
- Jaunetta Hill
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Karim E. Shalaby
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Syed W. Bihaqi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Bothaina H. Alansi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Benjamin Barlock
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Richard Thompson
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Khalid Ouararhni
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
| | - Nasser H. Zawia
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (J.H.); (S.W.B.); (B.H.A.); (B.B.)
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar; (K.E.S.); (K.O.)
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI 02881, USA
- Biological and Biomedical Sciences Division, College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha 34110, Qatar
| |
Collapse
|
8
|
Weaver DF. Druggable targets for the immunopathy of Alzheimer's disease. RSC Med Chem 2023; 14:1645-1661. [PMID: 37731705 PMCID: PMC10507808 DOI: 10.1039/d3md00096f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/21/2023] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is one of the leading threats to the health and socioeconomic well-being of humankind. Though research to develop disease modifying therapies for AD has traditionally focussed on the misfolding and aggregation of proteins, this approach has failed to yield a definitively curative agent. Accordingly, the search for additional or alternative approaches is a medicinal chemistry priority. Dysfunction of the brain's neuroimmune-neuroinflammation axis has emerged as a leading contender. Neuroimmunity however is mechanistically complex, rendering the recognition of candidate receptors a challenging task. Herein, a review of the role of neuroimmunity in the biomolecular pathogenesis of AD is presented with the identification of a 'druggable dozen' targets; in turn, each identified target represents one or more discrete receptors centred on a common biochemical mechanism. The druggable dozen is composed of both cellular and molecular messenger targets, with a 'targetable ten' microglial targets as well as two cytokine-based targets. For each target, the underlying molecular basis, with a consideration of strengths and weaknesses, is considered.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Department of Chemistry, University of Toronto 60 Leonard Avenue Toronto ON M5T 0S8 Canada
| |
Collapse
|
9
|
Structural and Biological Properties of Heteroligand Copper Complexes with Diethylnicotinamide and Various Fenamates: Preparation, Structure, Spectral Properties and Hirshfeld Surface Analysis. INORGANICS 2023. [DOI: 10.3390/inorganics11030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Herein, we discuss the synthesis, structural and spectroscopic characterization, and biological activity of five heteroligand copper(II) complexes with diethylnicotinamide and various fenamates, as follows: flufenamate (fluf), niflumate (nifl), tolfenamate (tolf), clonixinate (clon), mefenamate (mef) and N, N-diethylnicotinamide (dena). The complexes of composition: [Cu(fluf)2(dena)2(H2O)2] (1), [Cu(nifl)2(dena)2] (2), [Cu(tolf)2(dena)2(H2O)2] (3), [Cu(clon)2(dena)2] (4) and [Cu(mef)2(dena)2(H2O)2] (5), were synthesized, structurally (single-crystal X-ray diffraction) and spectroscopically characterized (IR, EA, UV-Vis and EPR). The studied complexes are monomeric, forming a distorted tetragonal bipyramidal stereochemistry around the central copper ion. The crystal structures of all five complexes were determined and refined with an aspheric model using the Hirshfeld atom refinement method. Hirshfeld surface analysis and fingerprint plots were used to investigate the intermolecular interactions in the crystalline state. The redox properties of the complexes were studied and evaluated via cyclic voltammetry. The complexes exhibited good superoxide scavenging activity as determined by an NBT assay along with a copper-based redox-cycling mechanism, resulting in the formation of ROS, which, in turn, predisposed the studied complexes for their anticancer activity. The ability of complexes 1–4 to interact with calf thymus DNA was investigated using absorption titrations, viscosity measurements and an ethidium-bromide-displacement-fluorescence-based method, suggesting mainly the intercalative binding of the complexes to DNA. The affinity of complexes 1–4 for bovine serum albumin was determined via fluorescence emission spectroscopy and was quantitatively characterized with the corresponding binding constants. The cytotoxic properties of complexes 1–4 were studied using the cancer cell lines A549, MCF-7 and U-118MG, as well as healthy MRC-5 cells. Complex 4 exhibited moderate anticancer activity on the MCF-7 cancer cells with IC50 = 57 μM.
Collapse
|
10
|
Stopschinski BE, Weideman RA, McMahan D, Jacob DA, Little BB, Chiang HS, Saez Calveras N, Stuve O. Microglia as a cellular target of diclofenac therapy in Alzheimer's disease. Ther Adv Neurol Disord 2023; 16:17562864231156674. [PMID: 36875711 PMCID: PMC9974624 DOI: 10.1177/17562864231156674] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 03/07/2023] Open
Abstract
Alzheimer's disease (AD) is an untreatable cause of dementia, and new therapeutic approaches are urgently needed. AD pathology is defined by extracellular amyloid plaques and intracellular neurofibrillary tangles. Research of the past decades has suggested that neuroinflammation plays a critical role in the pathophysiology of AD. This has led to the idea that anti-inflammatory treatments might be beneficial. Early studies investigated non-steroidal anti-inflammatory drugs (NSAIDS) such as indomethacin, celecoxib, ibuprofen, and naproxen, which had no benefit. More recently, protective effects of diclofenac and NSAIDs in the fenamate group have been reported. Diclofenac decreased the frequency of AD significantly compared to other NSAIDs in a large retrospective cohort study. Diclofenac and fenamates share similar chemical structures, and evidence from cell and mouse models suggests that they inhibit the release of pro-inflammatory mediators from microglia with leads to the reduction of AD pathology. Here, we review the potential role of diclofenac and NSAIDs in the fenamate group for targeting AD pathology with a focus on its potential effects on microglia.
Collapse
Affiliation(s)
- Barbara E Stopschinski
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Danni McMahan
- Pharmacy Service, Dallas VA Medical Center, Dallas, TX, USA
| | - David A Jacob
- Veterans Integrated Service Network 17, Arlington, TX, USA
| | - Bertis B Little
- School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Hsueh-Sheng Chiang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nil Saez Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Neurology Section, Dallas VA Medical Center, 4500 South Lancaster Road, Dallas, TX 75216, USA
| |
Collapse
|
11
|
Combinations of classical and non-classical voltage dependent potassium channel openers suppress nociceptor discharge and reverse chronic pain signs in a rat model of Gulf War illness. Neurotoxicology 2022; 93:186-199. [PMID: 36216193 DOI: 10.1016/j.neuro.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
In a companion paper we examined whether combinations of Kv7 channel openers (Retigabine and Diclofenac; RET, DIC) could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. In the present report, we examined the combinations of Retigabine/Meclofenamate (RET/MEC) and Meclofenamate/Diclofenac (MEC/DIC). Voltage clamp experiments were performed on deep tissue nociceptors isolated from rat DRG (dorsal root ganglion). In voltage clamp studies, a stepped voltage protocol was applied (-55 to -40 mV; Vh=-60 mV; 1500 msec) and Kv7 evoked currents were subsequently isolated by Linopirdine subtraction. MEC greatly enhanced voltage dependent conductance and produced exceptional maximum sustained currents of 6.01 ± 0.26 pA/pF (EC50: 62.2 ± 8.99 μM). Combinations of RET/MEC, and MEC/DIC substantially amplified resting currents at low concentrations. MEC/DIC also greatly improved voltage dependent conductance. In current clamp experiments, a cholinergic challenge test (Oxotremorine-M, 10 μM; OXO), associated with our GWI rat model, produced powerful action potential (AP) bursts (85 APs). Optimized combinations of RET/MEC (5 and 0.5 μM) and MEC/DIC (0.5 and 2.5 μM) significantly reduced AP discharges to 3 and 7 Aps, respectively. Treatment of pain-like ambulatory behavior in our rat model with a RET/MEC combination (5 and 0.5 mg/kg) successfully rescued ambulation deficits, but could not be fully separated from the effect of RET alone. Further development of this approach is recommended.
Collapse
|