1
|
Li X, Li W, Zhang Y, Xu L, Song Y. Exploiting the potential of the ubiquitin-proteasome system in overcoming tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Genes Dis 2024; 11:101150. [PMID: 38947742 PMCID: PMC11214299 DOI: 10.1016/j.gendis.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 07/02/2024] Open
Abstract
The advent of tyrosine kinase inhibitors (TKI) targeting BCR-ABL has drastically changed the treatment approach of chronic myeloid leukemia (CML), greatly prolonged the life of CML patients, and improved their prognosis. However, TKI resistance is still a major problem with CML patients, reducing the efficacy of treatment and their quality of life. TKI resistance is mainly divided into BCR-ABL-dependent and BCR-ABL-independent resistance. Now, the main clinical strategy addressing TKI resistance is to switch to newly developed TKIs. However, data have shown that these new drugs may cause serious adverse reactions and intolerance and cannot address all resistance mutations. Therefore, finding new therapeutic targets to overcome TKI resistance is crucial and the ubiquitin-proteasome system (UPS) has emerged as a focus. The UPS mediates the degradation of most proteins in organisms and controls a wide range of physiological processes. In recent years, the study of UPS in hematological malignant tumors has resulted in effective treatments, such as bortezomib in the treatment of multiple myeloma and mantle cell lymphoma. In CML, the components of UPS cooperate or antagonize the efficacy of TKI by directly or indirectly affecting the ubiquitination of BCR-ABL, interfering with CML-related signaling pathways, and negatively or positively affecting leukemia stem cells. Some of these molecules may help overcome TKI resistance and treat CML. In this review, the mechanism of TKI resistance is briefly described, the components of UPS are introduced, existing studies on UPS participating in TKI resistance are listed, and UPS as the therapeutic target and strategies are discussed.
Collapse
Affiliation(s)
- Xudong Li
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanli Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Linping Xu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan 450008, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Bailly C. Covalent binding of withanolides to cysteines of protein targets. Biochem Pharmacol 2024; 226:116405. [PMID: 38969301 DOI: 10.1016/j.bcp.2024.116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Withanolides represent an important category of natural products with a steroidal lactone core. Many of them contain an α,β-unsaturated carbonyl moiety with a high reactivity toward sulfhydryl groups, including protein cysteine thiols. Different withanolides endowed with marked antitumor and anti-inflammatory have been shown to form stable covalent complexes with exposed cysteines present in the active site of oncogenic kinases (BTK, IKKβ, Zap70), metabolism enzymes (Prdx-1/6, Pin1, PHGDH), transcription factors (Nrf2, NFκB, C/EBPβ) and other structural and signaling molecules (GFAP, β-tubulin, p97, Hsp90, vimentin, Mpro, IPO5, NEMO, …). The present review analyzed the covalent complexes formed through Michael addition alkylation reactions between six major withanolides (withaferin A, physalin A, withangulatin A, 4β-hydroxywithanolide E, withanone and tubocapsanolide A) and key cysteine residues of about 20 proteins and the resulting biological effects. The covalent conjugation of the α,β-unsaturated carbonyl system of withanolides with reactive protein thiols can occur with a large set of soluble and membrane proteins. It points to a general mechanism, well described with the leading natural product withaferin A, but likely valid for most withanolides harboring a reactive (electrophilic) enone moiety susceptible to react covalently with cysteinyl residues of proteins. The multiplicity of reactive proteins should be taken into account when studying the mechanism of action of new withanolides. Proteomic and network analyses shall be implemented to capture and compare the cysteine covalent-binding map for the major withanolides, so as to identify the protein targets at the origin of their activity and/or unwanted effects. Screening of the cysteinome will help understanding the mechanism of action and designing cysteine-reactive electrophilic drug candidates.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institute, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
3
|
Chen Z, Zhang J, Gao S, Jiang Y, Qu M, Gu J, Wu H, Nan K, Zhang H, Wang J, Chen W, Miao C. Suppression of Skp2 contributes to sepsis-induced acute lung injury by enhancing ferroptosis through the ubiquitination of SLC3A2. Cell Mol Life Sci 2024; 81:325. [PMID: 39079969 PMCID: PMC11335248 DOI: 10.1007/s00018-024-05348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The inflammatory cytokine storm causes systemic organ damage, especially acute lung injury in sepsis. In this study, we found that the expression of S-phase kinase-associated protein 2 (Skp2) was significantly decreased in sepsis-induced acute lung injury (ALI). Sepsis activated the MEK/ERK pathway and inhibited Skp2 expression in the pulmonary epithelium, resulting in a reduction of K48 ubiquitination of solute carrier family 3 member 2 (SLC3A2), thereby impairing its membrane localization and cystine/glutamate exchange function. Consequently, the dysregulated intracellular redox reactions induced ferroptosis in pulmonary epithelial cells, leading to lung injury. Finally, we demonstrated that intravenous administration of Skp2 mRNA-encapsulating lipid nanoparticles (LNPs) inhibited ferroptosis in the pulmonary epithelium and alleviated lung injury in septic mice. Taken together, these data provide an innovative understanding of the underlying mechanisms of sepsis-induced ALI and a promising therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shenjia Gao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jiahui Gu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158# Gongyuan Dong Road, Shanghai, 201700, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
4
|
Cigliano A, Simile MM, Vidili G, Pes GM, Dore MP, Urigo F, Cossu E, Che L, Feo C, Steinmann SM, Ribback S, Pascale RM, Evert M, Chen X, Calvisi DF. Fatty Acid Synthase Promotes Hepatocellular Carcinoma Growth via S-Phase Kinase-Associated Protein 2/p27 KIP1 Regulation. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1160. [PMID: 39064589 PMCID: PMC11278665 DOI: 10.3390/medicina60071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Maria M. Simile
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Gianpaolo Vidili
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Giovanni M. Pes
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Maria P. Dore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Francesco Urigo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Eleonora Cossu
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
| | - Claudio Feo
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Sara M. Steinmann
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17489 Greifswald, Germany;
| | - Rosa M. Pascale
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany; (E.C.); (S.M.S.); (M.E.)
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Fracisco, CA 94143, USA; (L.C.); (X.C.)
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Diego F. Calvisi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (A.C.); (M.M.S.); (G.V.); (G.M.P.); (M.P.D.); (F.U.); (C.F.); (R.M.P.)
| |
Collapse
|
5
|
Jan K, Hassan N, James A, Hussain I, Rashid SM. Exploring molecular targets in cancer: Unveiling the anticancer potential of Paeoniflorin through a comprehensive analysis of diverse signaling pathways and recent advances. J Biol Methods 2024; 11:e99010014. [PMID: 39323487 PMCID: PMC11423941 DOI: 10.14440/jbm.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
Tumors have posed significant threats to human health for over 250 years, emerging as the foremost cause of death. While chemotherapeutic drugs are effective in treating tumors, their side effects can sometimes be challenging to manage during therapy. Nonetheless, there is growing interest in exploring natural compounds as alternatives, which potentially achieve therapeutic outcomes comparable to conventional chemotherapeutics with fewer adverse effects. Paeoniflorin (PF), a monoterpene glycoside derived from the root of Paeonia lactiflora, has garnered significant attention lately due to its promising anti-cancer properties. This review offers an updated outline of the molecular mechanisms underlying PF's anti-tumor function, with a focus on its modulation of various signaling pathways. PF exerts its anti-tumor activity by regulating crucial cellular processes including apoptosis, angiogenesis, proliferation, and metastasis. We explored the multifaceted impact of PF while modulating through signaling pathways, encompassing nuclear factor kappa B, NOTCH, caspase cascade, transforming growth factor-β, NEDD4, P53/14-3-3, STAT 3, MAPK, MMP-9, and SKP2 signaling pathways, highlighting its versatility in targeting diverse malignancies. Furthermore, we discuss future research directions aimed at exploring innovative and targeted cancer therapies facilitated by PF.
Collapse
Affiliation(s)
- Kounser Jan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Neelofar Hassan
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Antonisamy James
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| | - Ishraq Hussain
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, Srinagar, Jammu and Kashmir, 190006, India
- Departments of Medicinal and Biological Chemistry, The University of Toledo, Toledo, Ohio, 43614, United States of America
| |
Collapse
|
6
|
Jiang Y, Ren X, Zhao J, Liu G, Liu F, Guo X, Hao M, Liu H, Liu K, Huang H. Exploring the Molecular Therapeutic Mechanisms of Gemcitabine through Quantitative Proteomics. J Proteome Res 2024; 23:2343-2354. [PMID: 38831540 DOI: 10.1021/acs.jproteome.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Gemcitabine (GEM) is widely employed in the treatment of various cancers, including pancreatic cancer. Despite their clinical success, challenges related to GEM resistance and toxicity persist. Therefore, a deeper understanding of its intracellular mechanisms and potential targets is urgently needed. In this study, through mass spectrometry analysis in data-dependent acquisition mode, we carried out quantitative proteomics (three independent replications) and thermal proteome profiling (TPP, two independent replications) on MIA PaCa-2 cells to explore the effects of GEM. Our proteomic analysis revealed that GEM led to the upregulation of the cell cycle and DNA replication proteins. Notably, we observed the upregulation of S-phase kinase-associated protein 2 (SKP2), a cell cycle and chemoresistance regulator. Combining SKP2 inhibition with GEM showed synergistic effects, suggesting SKP2 as a potential target for enhancing the GEM sensitivity. Through TPP, we pinpointed four potential GEM binding targets implicated in tumor development, including in breast and liver cancers, underscoring GEM's broad-spectrum antitumor capabilities. These findings provide valuable insights into GEM's molecular mechanisms and offer potential targets for improving treatment efficacy.
Collapse
Affiliation(s)
- Yue Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuelian Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jing Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinlong Guo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ming Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - He Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
7
|
Colon T, Kou Z, Choi BH, Tran F, Zheng E, Dai W. Enzyme-independent role of EZH2 in regulating cell cycle progression via the SKP2-KIP/CIP pathway. Sci Rep 2024; 14:13389. [PMID: 38862595 PMCID: PMC11166936 DOI: 10.1038/s41598-024-64338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
While EZH2 enzymatic activity is well-known, emerging evidence suggests that EZH2 can exert functions in a methyltransferase-independent manner. In this study, we have uncovered a novel mechanism by which EZH2 positively regulates the expression of SKP2, a critical protein involved in cell cycle progression. We demonstrate that depletion of EZH2 significantly reduces SKP2 protein levels in several cell types, while treatment with EPZ-6438, an EZH2 enzymatic inhibitor, has no effect on SKP2 protein levels. Consistently, EZH2 depletion leads to cell cycle arrest, accompanied by elevated expression of CIP/KIP family proteins, including p21, p27, and p57, whereas EPZ-6438 treatment does not modulate their levels. We also provide evidence that EZH2 knockdown, but not enzymatic inhibition, suppresses SKP2 mRNA expression, underscoring the transcriptional regulation of SKP2 by EZH2 in a methyltransferase-independent manner. Supporting this, analysis of the Cancer Genome Atlas database reveals a close association between EZH2 and SKP2 expression in human malignancies. Moreover, EZH2 depletion but not enzymatic inhibition positively regulates the expression of major epithelial-mesenchymal transition (EMT) regulators, such as ZEB1 and SNAIL1, in transformed cells. Our findings shed light on a novel mechanism by which EZH2 exerts regulatory effects on cell proliferation and differentiation through its methyltransferase-independent function, specifically by modulating SKP2 expression.
Collapse
Affiliation(s)
- Tania Colon
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA
| | - Ziyue Kou
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA
| | - Byeong Hyeok Choi
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA
| | - Franklin Tran
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA
| | - Edwin Zheng
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA
| | - Wei Dai
- Division of Environmental Medicine, Department of Medicine Grossman School of Medicine, New York University, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
8
|
William JNG, Dhar R, Gundamaraju R, Sahoo OS, Pethusamy K, Raj AFPAM, Ramasamy S, Alqahtani MS, Abbas M, Karmakar S. SKping cell cycle regulation: role of ubiquitin ligase SKP2 in hematological malignancies. Front Oncol 2024; 14:1288501. [PMID: 38559562 PMCID: PMC10978726 DOI: 10.3389/fonc.2024.1288501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 04/04/2024] Open
Abstract
SKP2 (S-phase kinase-associated protein 2) is a member of the F-box family of substrate-recognition subunits in the SCF ubiquitin-protein ligase complexes. It is associated with ubiquitin-mediated degradation in the mammalian cell cycle components and other target proteins involved in cell cycle progression, signal transduction, and transcription. Being an oncogene in solid tumors and hematological malignancies, it is frequently associated with drug resistance and poor disease outcomes. In the current review, we discussed the novel role of SKP2 in different hematological malignancies. Further, we performed a limited in-silico analysis to establish the involvement of SKP2 in a few publicly available cancer datasets. Interestingly, our study identified Skp2 expression to be altered in a cancer-specific manner. While it was found to be overexpressed in several cancer types, few cancer showed a down-regulation in SKP2. Our review provides evidence for developing novel SKP2 inhibitors in hematological malignancies. We also investigated the effect of SKP2 status on survival and disease progression. In addition, the role of miRNA and its associated families in regulating Skp2 expression was explored. Subsequently, we predicted common miRNAs against Skp2 genes by using miRNA-predication tools. Finally, we discussed current approaches and future prospective approaches to target the Skp2 gene by using different drugs and miRNA-based therapeutics applications in translational research.
Collapse
Affiliation(s)
- Jonahunnatha Nesson George William
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), Ageing Research Center and Translational Medicine-CeSI-MeT, “G. d’Annunzio” University Chieti-Pescara, Chieti, Italy
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Gundamaraju
- ER Stress and Intestinal Mucosal Biology Lab, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department Of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
10
|
Qiao C, Huang F, He J, Wu Q, Zheng Z, Zhang T, Miao Y, Yuan Y, Chen X, Du Q, Xu Y, Wu D, Yu Z, Zheng H. Ceftazidime reduces cellular Skp2 to promote type-I interferon activity. Immunology 2023; 170:527-539. [PMID: 37641430 DOI: 10.1111/imm.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Skp2 plays multiple roles in malignant tumours. Here, we revealed that Skp2 negatively regulates type-I interferon (IFN-I)-mediated antiviral activity. We first noticed that Skp2 can promote virus infection in cells. Further studies demonstrated that Skp2 interacts with IFN-I receptor 2 (IFNAR2) and promotes K48-linked polyubiquitination of IFNAR2, which accelerates the degradation of IFNAR2 proteins. Skp2-mediated downregulation of IFNAR2 levels inhibits IFN-I signalling and IFN-I-induced antiviral activity. In addition, we uncovered for the first time that the antibiotic ceftazidime can act as a repressor of Skp2. Ceftazidime reduces cellular Skp2 levels, thus enhancing IFNAR2 stability and IFN-I antiviral activity. This study reveals a new role of Skp2 in regulating IFN-I signalling and IFN-I antiviral activity and reports the antibiotic ceftazidime as a potential repressor of Skp2.
Collapse
Affiliation(s)
- Caixia Qiao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Fan Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
- The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiuyi He
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qiuyu Wu
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Zhijin Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tingting Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yukang Yuan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiangjie Chen
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Du
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Zhengyuan Yu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Jin Y, Cao J, Cheng H, Hu X. LncRNA POU6F2-AS2 contributes to malignant phenotypes and paclitaxel resistance by promoting SKP2 expression in stomach adenocarcinoma. J Chemother 2023; 35:638-652. [PMID: 36797828 DOI: 10.1080/1120009x.2023.2177807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
This study aimed to investigate the role and mechanism of POU6F2-AS2 in the development of gastric cancer. POU6F2-AS2 expression was considerably higher in clinical stomach adenocarcinoma (STAD) tissues and gastric cancer cell lines (MKN-28 and MGC-803) than in neighbouring normal tissues and gastric mucosa epithelial cells (GES-1). POU6F2-AS2 overexpression resulted in a low overall survival probability, progression-free survival probability and post progression survival probability, as well as increased cell viability, migration and invasion of gastric cancer cells, thereby inhibiting apoptosis. Based on RNA pull-down, cycloheximide and MG132 incubation experiments, POU6F2-AS2 promoted SKP2 by stabilizing NONO expression. In addition, in vivo silencing of POU6F2-AS2 in gastric cancer cells can inhibit tumour progression and produce a synergistic antitumour effect when combined with paclitaxel. POU6F2-AS2 is overexpressed in STAD, which is attributed to a bad prognosis. In vitro and in vivo experiments have confirmed that the POU6F2-AS2/NONO/SKP2 axis promotes STAD progression, and that the silencing of POU6F2-AS2 plays a synergistic antitumour effect when combined with paclitaxel. Therefore, POU6F2-AS2 may be potentially developed as a target to inhibit STAD and reduce chemoresistance.
Collapse
Affiliation(s)
- Yanzhao Jin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua Cheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoyun Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Wu T, Li C, Zhou C, Niu X, Li G, Zhou Y, Gu X, Cui H. Inhibition of USP14 enhances anti-tumor effect in vemurafenib-resistant melanoma by regulation of Skp2. Cell Biol Toxicol 2023; 39:2381-2399. [PMID: 35648318 DOI: 10.1007/s10565-022-09729-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The mutation of BRAF V600E often occurred in melanoma and results in tumorigenesis. BRAF mutation drives hyperactivation of the RAF-MAPK-ERK pathway. The acquired drug resistance upon prolonged use of BRAF inhibitors (such as vemurafenib) still remains the main obstacle. Previously, we have found that E3 ligase Skp2 over-expresses vemurafenib-resistant melanoma cells, and knockdown of Skp2 enhances the anti-tumor effect of vemurafenib. Interestingly, the literature has reported that the selective USP14/UCHL5 inhibitor b-AP15 displays great potential in melanoma therapy; however, the molecular mechanism still remains unknown. METHODS In vitro, the effect of the combination regimen of vemurafenib (Vem, PLX4032) and b-AP15 on vem-sensitive and vem-resistant melanoma has been investigated by wound healing, colony formation, transwell invasion assay, flow cytometry, lysosome staining, and ROS detection. In vivo, the combination effect on vem-resistant melanoma has been evaluated with a nude mice xenograft tumor model. GST-pulldown and co-immunoprecipitation (co-IP) assays have been applied to investigate the interactions between USP14, UCHL5, and Skp2. Cycloheximide (CHX) assay and ubiquitination assays have been used to explore the effect of USP14 on Skp2 protein half-life and ubiquitination status. RESULTS In the present study, we have revealed that repression of USP14 sensitizes vemurafenib resistance in melanoma through a previously unappreciated mechanism that USP14 but not UCHL5 stabilizes Skp2, blocking its ubiquitination. K119 on Skp2 is required for USP14-mediated deubiquitination and stabilization of Skp2. Furthermore, the mutated catalytic activity amino acid cysteine (C) 114 on USP14 abrogates stabilization of Skp2. Stabilization of Skp2 is required for USP14 to negatively regulate autophagy. The combination regimen of Skp2 inhibitor vemurafenib and USP14/UCHL5 inhibitor b-AP15 dramatically inhibits cell viability, migration, invasion, and colony formation in vemurafenib-sensitive and vemurafenib-resistant melanoma. Vemurafenib and b-AP15 hold cells in the S phase thus leading to apoptosis as well as the formation of the autophagic vacuole in vemurafenib-resistant SKMEL28 cells. The enhanced proliferation effect of USP14 and Skp2 is mainly due to a more effective reduction of cell apoptosis and autophagy. Further evaluation of various protein alterations has revealed that the increased expression of cleaved-PARP, LC3, and decreased Ki67 are more obvious in the combination of vemurafenib and b-AP15 treatment than those in single-drug treatment. Moreover, the co-treatment of vemurafenib and b-AP15 dramatically inhibits the growth of vemurafenib-resistant melanoma xenograft in vivo. Collectively, our findings have demonstrated that the combination of Skp2 inhibitor and USP14 inhibitor provides a new solution for the treatment of BRAF inhibitor resistance melanoma.
Collapse
Affiliation(s)
- Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Chengyun Li
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Changlong Zhou
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Yali Zhou
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, China.
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
13
|
Sanati M, Afshari AR, Kesharwani P, Sahebkar A. Recent advances in codelivery of curcumin and siRNA as anticancer therapeutics. Eur Polym J 2023; 198:112444. [DOI: 10.1016/j.eurpolymj.2023.112444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
14
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Li H, Ouyang J, Liu R. Platycodin D suppresses proliferation, migration, and invasion of human glioblastoma cells through regulation of Skp2. Eur J Pharmacol 2023; 948:175697. [PMID: 36997048 DOI: 10.1016/j.ejphar.2023.175697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION PD suppresses glioma development by regulation of Skp2 in GBM cells.
Collapse
|
16
|
Moses EJ, Azlan A, Khor KZ, Mot YY, Mohamed S, Seeni A, Barneh F, Heidenreich O, Yusoff N. A RUNX1/ETO-SKP2-CDKN1B axis regulates expression of telomerase in t (8;21) acute myeloid leukemia. Cell Mol Life Sci 2023; 80:70. [PMID: 36820913 PMCID: PMC11071865 DOI: 10.1007/s00018-023-04713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
The fusion oncoprotein RUNX1/ETO which results from the chromosomal translocation t (8;21) in acute myeloid leukemia (AML) is an essential driver of leukemic maintenance. We have previously shown that RUNX1/ETO knockdown impairs expression of the protein component of telomerase, TERT. However, the underlying molecular mechanism of how RUNX1/ETO controls TERT expression has not been fully elucidated. Here we show that RUNX1/ETO binds to an intergenic region 18 kb upstream of the TERT transcriptional start site and to a site located in intron 6 of TERT. Loss of RUNX1/ETO binding precedes inhibition of TERT expression. Repression of TERT expression is also dependent on the destabilization of the E3 ubiquitin ligase SKP2 and the resultant accumulation of the cell cycle inhibitor CDKN1B, that are both associated with RUNX1/ETO knockdown. Increased CDKN1B protein levels ultimately diminished TERT transcription with E2F1/Rb involvement. Collectively, our results show that RUNX1/ETO controls TERT expression directly by binding to its locus and indirectly via a SKP2-CDKN1B-E2F1/Rb axis.
Collapse
Affiliation(s)
- Emmanuel J Moses
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia.
| | - Adam Azlan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Kang Zi Khor
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Saleem Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Azman Seeni
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Farnaz Barneh
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| | - Narazah Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
17
|
Li J, Wang R, Liu Y, Wu Y, Han L, Zheng L, Bao Z. FKA-A NPs enhances PTX-A NPs efficacy to suppress ovarian cancer via regulating Skp2/YAP pathway. Fundam Clin Pharmacol 2023; 37:125-136. [PMID: 36028983 DOI: 10.1111/fcp.12828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Recurrence and distant metastasis after paclitaxel (PTX)-based chemotherapy in ovarian cancer (OC) patients remains a clinical obstacle. Flavokawain A (FKA) is a novel chalcone from kava plant that can induce G2/M arrest and inhibit invasion and metastasis in different tumor cells. In this study, we examined the effects and the molecular mechanism of sodium aescinate (Aes)-stabilized nanoparticles FKA-A NPs in enhancing the efficacy of PTX-A NPs in vitro and in vivo. We showed that FKA-A NPs combined with PTX-A NPs notably inhibited the proliferation and migration and reduced the expression of EMT-related markers in OCs. YAP nuclear translocation and its downstream signaling pathway were remarkably activated after PTX-A NPs treatment in OCs. FKA-A NPs obviously inhibited YAP nuclear translocation and reduced the transcriptional activity of YAP target genes. Simultaneously, FKA-A NPs dose and time dependently inhibited Skp2 expression in A2780 and Skov3 cells. In contrast, overexpression of Skp2 significantly attenuated the inhibition of FKA-A NPs on YAP nuclear translocation. In OC homograft mice, treatment with FKA-A NPs and PTX-A NPs significantly suppressed the growth of homograft tumor compared with PTX-A NPs but did not decrease mice's body weight. In summary, we demonstrate that FKA-A NPs enhance the efficacy of PTX-A NPs against OCs in vitro and in vivo via reducing Skp2 expression, thus suppressing YAP nuclear translocation and activity of its target genes.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| | - Rongmei Wang
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| | - Yuqian Wu
- Cancer Center, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| | - Leiqiang Han
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| | - Lei Zheng
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhengqiang Bao
- Cancer Center, The Second Hospital, Cheeloo College of medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Jing J, Rui L, Junyuan S, Jinfeng Y, Zhihao H, Weiguo L, Zhenyu J. Small-molecule compounds inhibiting S-phase kinase-associated protein 2: A review. Front Pharmacol 2023; 14:1122008. [PMID: 37089937 PMCID: PMC10113621 DOI: 10.3389/fphar.2023.1122008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
S-phase kinase-associated protein 2 (Skp2) is a substrate-specific adaptor in Skp1-CUL1-ROC1-F-box E3 ubiquitin ligases and widely regarded as an oncogene. Therefore, Skp2 has remained as an active anticancer research topic since its discovery. Accordingly, the structure of Skp2 has been solved and numerous Skp2 inhibiting compounds have been identified. In this review, we would describe the structural features of Skp2, introduce the ubiquitination function of SCFSkp2, and summarize the diverse natural and synthetic Skp2 inhibiting compounds reported to date. The IC50 data of the Skp2 inhibitors or inhibiting compounds in various kinds of tumors at cellular levels implied that the cancer type, stage and pathological mechanisms should be taken into consideration when selecting Skp2-inhibiting compound for cancer treatment.
Collapse
Affiliation(s)
- Jia Jing
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Li Rui
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sun Junyuan
- Schools of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yang Jinfeng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Hong Zhihao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lu Weiguo
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| | - Jia Zhenyu
- Institute of Occupation Diseases, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
- *Correspondence: Lu Weiguo, ; Jia Zhenyu,
| |
Collapse
|
19
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
20
|
Shi S, Qin Y, Chen D, Deng Y, Yin J, Liu S, Yu H, Huang H, Chen C, Wu Y, Zou D, Wang Z. Echinacoside (ECH) suppresses proliferation, migration, and invasion of human glioblastoma cells by inhibiting Skp2-triggered epithelial-mesenchymal transition (EMT). Eur J Pharmacol 2022; 932:175176. [PMID: 35995211 DOI: 10.1016/j.ejphar.2022.175176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Echinacoside (ECH) is a phenylethanoid extracted from the stems of Cistanches salsa, an herb used in Chinese medicine formulations, and is effective against glioblastoma multiforme (GBM). Epithelial-mesenchymal transition (EMT) is the cornerstone of tumorigenesis and metastasis, and increases the malignant behavior of GBM cells. The S phase kinase-related protein 2 (skp2), an oncoprotein associated with EMT, is highly expressed in GBM and significantly associated with drug resistance, tumor grade and dismal prognosis. The aim of this study was to explore the inhibitory effects of ECH against GBM development and skp2-induced EMT. METHODS CCK-8, EdU incorporation, transwell, colony formation and sphere formation assays were used to determine the effects of ECH on GBM cell viability, proliferation, migration and invasion in vitro. The in vivo anti-glioma effects of ECH were examined using a U87 xenograft model. The expression levels of skp2 protein, EMT-associated markers (vimentin and snail) and stemness markers (Nestin and sox2) were analyzed by immunohistochemistry, immunofluorescence staining and western blotting experiments. RESULTS ECH suppressed the proliferation, invasiveness and migration of GBM cells in vitro, as well as the growth of U87 xenograft in vivo. In addition, ECH downregulated the skp2 protein, EMT-related markers (vimentin and snail) and stemness markers (sox2 and Nestin). The inhibitory effects of ECH were augmented in the skp2-knockdown GBM cells, and reversed in cells with ectopic expression of skp2. CONCLUSION ECH inhibits glioma development by suppressing skp2-induced EMT of GBM cells.
Collapse
Affiliation(s)
- Shengying Shi
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yixin Qin
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530201, China
| | - Danmin Chen
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yanhong Deng
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Jinjin Yin
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Shaozhi Liu
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Hang Yu
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Hanhui Huang
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Chaoduan Chen
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yinyue Wu
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Duan Zou
- Department of Pharmacy, Biomedicine Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Zhaotao Wang
- Institute of Neuroscience, Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
21
|
Lohmüller M, Roeck BF, Szabo TG, Schapfl MA, Pegka F, Herzog S, Villunger A, Schuler F. The SKP2-p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol Oncol 2022; 16:2771-2787. [PMID: 35673965 PMCID: PMC9348596 DOI: 10.1002/1878-0261.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.
Collapse
Affiliation(s)
- Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Bernhard F Roeck
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Tamas G Szabo
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fragka Pegka
- Institute for Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
22
|
Kuttikrishnan S, Bhat AA, Mateo JM, Ahmad F, Alali FQ, El-Elimat T, Oberlies NH, Pearce CJ, Uddin S. Anticancer activity of Neosetophomone B by targeting AKT/SKP2/MTH1 axis in leukemic cells. Biochem Biophys Res Commun 2022; 601:59-64. [PMID: 35228122 DOI: 10.1016/j.bbrc.2022.02.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
|
23
|
Shabestari RM, Chegeni R, Faranoush M, Zaker F, Safa M. Inhibition of Skp2 enhances doxorubicin-induced cell death in B cell precursor acute lymphoblastic leukemia. Cell Biol Int 2022; 46:895-906. [PMID: 35143089 DOI: 10.1002/cbin.11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/05/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) is a well-defined component of the Skp2-Culin1-F-box (SCF) E3 ubiquitin ligase complex, which is involved in cell cycle progression and considered a prognostic marker in cancers. Overexpression of Skp2 is frequently observed in patients with Acute lymphoblastic leukemia (ALL). Inhibition of this protein may be a valuable strategy to induce apoptosis in malignant cells. Less well known is the effect of Skp2 inhibition on the potentiation of the chemotherapeutic-induced cell death in B cell precursor acute lymphoblastic leukemia (BCP-ALL). Our results demonstrated that inhibition of the Skp2 using SZL P1-41, not only resulted in caspase-mediated apoptosis but also potentiated doxorubicin-induced apoptosis in BCP-ALL cell lines (NALM-6 and SUP-B15). SZL P1-41 in combination with doxorubicin altered cell cycle distribution and the level of cyclins and CDKs in BCP-ALL cells. DNA damage response genes were also up-regulated in presence of the doxorubicin and SZL P1-41 in both cell lines. In conclusion, our results indicated that inhibition of Skp2 either alone or in a combination with doxorubicin may hold promise in the future treatment of BCP-ALL. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rima Manafi Shabestari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Zaker
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Borysowski J, Górski A. ClinicalTrials.gov as a Source of Information About Expanded Access Programs: Cohort Study. J Med Internet Res 2021; 23:e26890. [PMID: 34709189 PMCID: PMC8587192 DOI: 10.2196/26890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND ClinicalTrials.gov (CT.gov) is the most comprehensive internet-based register of different types of clinical studies. Expanded access is the use of unapproved drugs, biologics, or medical devices outside of clinical trials. One of the key problems in expanded access is the availability to both health care providers and patients of information about unapproved treatments. OBJECTIVE We aimed to evaluate CT.gov as a potential source of information about expanded access programs. METHODS We assessed the completeness of information in the records of 228 expanded access programs registered with CT.gov from February 2017 through May 2020. Moreover, we examined what percentage of published expanded access studies has been registered with CT.gov. Logistic regression (univariate and multivariate) and mediation analyses were used to identify the predictors of the absence of some information and a study's nonregistration. RESULTS We found that some important data were missing from the records of many programs. Information that was missing most often included a detailed study description, facility information, central contact person, and eligibility criteria (55.3%, 54.0%, 41.7%, and 17.5% of the programs, respectively). Multivariate analysis showed that information about central contact person was more likely to be missing from records of studies registered in 2017 (adjusted OR 21.93; 95% CI 4.42-172.29; P<.001). This finding was confirmed by mediation analysis (P=.02). Furthermore, 14% of the programs were registered retrospectively. We also showed that only 33 of 77 (42.9%) expanded access studies performed in the United States and published from 2014 through 2019 were registered with CT.gov. However, multivariate logistic regression analysis showed no significant association between any of the variables related to the studies and the odds of study nonregistration (P>.01). CONCLUSIONS Currently, CT.gov is a quite fragmentary source of data on expanded access programs. This problem is important because CT.gov is the only publicly available primary source of information about specific programs. We suggest the actions that should be taken by different stakeholders to fully exploit this register as a source of information about expanded access.
Collapse
Affiliation(s)
- Jan Borysowski
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
- Centre for Studies on Research Integrity, Institute of Law Studies, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Górski
- Laboratory of Bacteriophages, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
25
|
Maimaitirexiati G, Tian P, Maimaiti H, Ding L, Ma C, Li Y, Wang J, Yan Q, Li R. Expression and correlation analysis of Skp2 and CBX7 in cervical cancer. J Clin Pathol 2021; 75:851-856. [PMID: 34281957 DOI: 10.1136/jclinpath-2021-207752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/03/2021] [Indexed: 01/25/2023]
Abstract
AIMS S-phase kinase-associated protein 2 (Skp2) oncoprotein is overexpressed in a variety of cancer tissues and promotes the malignant development of cancer. The expression levels of chromobox homolog 7 (CBX7) protein are varied among different types of cancer tissues, but its role in cervical cancer is not clear. We aimed to examine the expression and clinical significance of Skp2 and CBX7 proteins as well as their correlations in cervical cancer. METHODS Immunohistochemistry was used to detect the expression of Skp2 and CBX7 proteins in the cancerous tissues and adjacent tissues of 64 patients with cervical cancer. Relevant clinicopathological data of these patients were collected, compared and analysed for the correlations. RESULTS The expression of Skp2 protein in cervical cancer (87.5%) was higher than that in paracancerous tissues (14.1%), and the expression was positively correlated with clinical stage, malignant degree, lymphatic metastasis, vascular invasion and interstitial invasion. The expression of CBX7 protein in cervical cancer (48.4%) was lower than that in paracancerous tissues (96.8%), and the expression was negatively correlated with clinical stage, malignant degree, interstitial invasion, vascular invasion and lymphatic metastasis. The expression of Skp2 protein and CBX7 protein in cervical cancer tissues and adjacent tissues was negatively correlated. The expression of Skp2 and CBX7 proteins was closely related to the clinicopathological features of cervical cancer. CONCLUSIONS CBX7 may play the role of a tumour suppressor gene in cervical cancer and provide reference value for the diagnosis and new targeted treatment of cervical cancer.
Collapse
Affiliation(s)
| | - Ping Tian
- Xinjiang Medical University Affiliated Fifth Hospital, Urumqi, Xinjiang, China
| | - Hatimihan Maimaiti
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Lu Ding
- Xinjiang Medical University Affiliated Fifth Hospital, Urumqi, Xinjiang, China
| | - Cailing Ma
- Department of Gynecology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.,State key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Yuting Li
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Wang
- Department of Gynecology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.,State key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Qi Yan
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Rong Li
- College of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|