1
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Li D, He J, Ding G, Xin Y, Feng F, Ma S, Lin L, Wang E, Wang J. Advancements in NADH Oxidase Nanozymes: Bridging Nanotechnology and Biomedical Applications. Adv Healthc Mater 2024:e2402785. [PMID: 39344219 DOI: 10.1002/adhm.202402785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/04/2024] [Indexed: 10/01/2024]
Abstract
Nicotinamide adenine dinucleotide (NADH) oxidase (NOX) is key in converting NADH to NAD+, crucial for various biochemical pathways. However, natural NOXs are costly and unstable. NOX nanozymes offer a promising alternative with potential applications in bio-sensing, antibacterial treatments, anti-aging, and anticancer therapies. This review provides a comprehensive overview of the types, functional mechanisms, biomedical applications, and future research perspectives of NOX nanozymes. It also addresses the primary challenges and future directions in the research and development of NOX nanozymes, underscoring the critical need for continued investigation in this promising area. These challenges include optimizing the catalytic efficiency, ensuring biocompatibility, and achieving targeted delivery and controlled activity within biological systems. Additionally, the exploration of novel materials and hybrid structures holds great potential for enhancing the functional capabilities of NOX nanozymes. Future research directions can involve integrating advanced computational modeling with experimental techniques to better understand the underlying mechanisms and to design more effective nanozyme candidates. Collaborative efforts across disciplines such as nanotechnology, biochemistry, and medicine will be essential to unlock the full potential of NOX nanozymes in future biomedical applications.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Juyang He
- Department of Gynecological Oncology, the First Hospital of Jilin University (J. He) and School of Pharmaceutical Sciences (F. Fan), Jilin University, Changchun, Jilin, 130000, P. R. China
| | - Guanyu Ding
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Yan Xin
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Fan Feng
- Department of Gynecological Oncology, the First Hospital of Jilin University (J. He) and School of Pharmaceutical Sciences (F. Fan), Jilin University, Changchun, Jilin, 130000, P. R. China
| | - Shuaining Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Lu Lin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Science, Wenzhou Institute, University of Chinese Academy of Sciences, Beijing, 325001, P. R. China
- Department of Chemistry of Physics & Astronomy, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| |
Collapse
|
4
|
Zhang N, Guo P, Zhao Y, Qiu X, Shao S, Liu Z, Gao Z. Pharmacological mechanisms of puerarin in the treatment of Parkinson's disease: An overview. Biomed Pharmacother 2024; 177:117101. [PMID: 39002442 DOI: 10.1016/j.biopha.2024.117101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Puerarin, a monomer of traditional Chinese medicine, is a key component of Pueraria radix. Both clinical and experimental researches demonstrated that puerarin has therapeutic effects on Parkinson's disease (PD). Puerarin's pharmacological mechanisms include: 1) Anti-apoptosis. Puerarin inhibits cell apoptosis through the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) and c-Jun N-terminal kinase (JNK) signaling pathways. Puerarin also exerts a hormone-like effect against cell apoptosis; 2) Anti-oxidative stress injury. Puerarin inhibits the Nrf2 nuclear exclusion through the GSK-3β/Fyn pathway to promote the Nrf2 accumulation in the nucleus, and then promotes the antioxidant synthesis through the Nrf2/ARE signaling pathway to protect against oxidative stress; 3) Neuroprotective effects by intervening in the ubiquitin-proteasome system (UPS) and autophagy-lysosomal pathway (ALP). Puerarin significantly enhances the activity of chaperone-mediated autophagy (CMA), which downregulates the expression of α-synuclein, reduces its accumulation, and thus improves the function of damaged neurons. Additionally, puerarin increases proteasome activity and decreases ubiquitin-binding proteins, thereby preventing toxic accumulation of intracellular proteins; 4) Alleviating inflammatory response. Puerarin inhibits the conversion of microglia to the M1 phenotype while inducing the transition of microglia to the M2 phenotype. Furthermore, puerarin promotes the secretion of anti-inflammatory factor and inhibits the expression of pro-inflammatory factors; 5) Increasing the levels of dopamine and its metabolites. Puerarin could increase the levels of dopamine, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum; 6) Promoting neurotrophic factor expression and neuronal repair. Puerarin increases the expression of glial cell-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), thereby exerting a neuroprotective effect. Moreover, the regulation of the gut microbiota by puerarin may be a potential mechanism for the treatment of PD. The current review discusses the molecular mechanisms of puerarin, which may provide insight into the active components of traditional Chinese medicine in the treatment of PD.
Collapse
Affiliation(s)
- Nianping Zhang
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Peng Guo
- Department of Neurology, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Yan Zhao
- Department of Hand and Upper Limb Surgery, Jinan Third People's Hospital, Jinan, Shandong 250132, China
| | - Xiao Qiu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Shuai Shao
- Department of reproductive medicine, Jingmen People's Hospital, Jingmen, Hubei 448000, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong, Sichuan 637100, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China.
| |
Collapse
|
5
|
Hu L, Zhu Y, Zhong C, Cai Q, Zhang H, Zhang X, Yao Q, Hang Y, Ge Y, Hu Y. Discrimination of three commercial tuna species through species-specific peptides: From high-resolution mass spectrometry discovery to MRM validation. Food Res Int 2024; 187:114462. [PMID: 38763689 DOI: 10.1016/j.foodres.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.
Collapse
Affiliation(s)
- Lingping Hu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China; College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yin Zhu
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Chao Zhong
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Qiang Cai
- Yangtze Delta Region Institute of Tsinghua University, Zhejiang 314006, China.
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Xiaomei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province 266002, China.
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Yuyu Hang
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yingliang Ge
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University, Yazhou Bay Innovation Institute, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya 572022, China.
| |
Collapse
|
6
|
Szymkowiak I, Kucinska M, Murias M. Between the Devil and the Deep Blue Sea-Resveratrol, Sulfotransferases and Sulfatases-A Long and Turbulent Journey from Intestinal Absorption to Target Cells. Molecules 2023; 28:molecules28083297. [PMID: 37110530 PMCID: PMC10140952 DOI: 10.3390/molecules28083297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
For nearly 30 years, resveratrol has attracted the scientific community's interest. This has happened thanks to the so-called French paradox, that is, the paradoxically low mortality from cardiovascular causes in the French population despite a diet rich in saturated fat. This phenomenon has been linked to the consumption of red wine, which contains a relatively high level of resveratrol. Currently, resveratrol is valued for its versatile, beneficial properties. Apart from its anti-atherosclerotic activity, resveratrol's antioxidant and antitumor properties deserve attention. It was shown that resveratrol inhibits tumour growth at all three stages: initiation, promotion, and progression. Moreover, resveratrol delays the ageing process and has anti-inflammatory, antiviral, antibacterial, and phytoestrogenic properties. These favorable biological properties have been demonstrated in vitro and in vivo in animal and human models. Since the beginning of the research on resveratrol, its low bioavailability, mainly due to its rapid metabolism, especially the first-pass effect that leaves almost no free resveratrol in the peripheral circulation, has been indicated as a drawback that has hindered its use. The elucidation of such issues as pharmacokinetics, stability, and the biological activity of resveratrol metabolites is therefore crucial for understanding the biological activity of resveratrol. Second-phase metabolism enzymes are mainly involved in RSV metabolism, e.g., UDP-glucuronyl transferases and sulfotransferases. In the present paper, we took a closer look at the available data on the activity of resveratrol sulfate metabolites and the role of sulfatases in releasing active resveratrol in target cells.
Collapse
Affiliation(s)
- Izabela Szymkowiak
- Curtis Health Caps S.A., ul. Batorowska 52, 62-081 Przeźmierowo, Poland
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, ul. Dojazd 30, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, ul. Uniwersytetu Poznańskiego, 61-614 Poznan, Poland
| |
Collapse
|
7
|
Zhao J, Ye L, Liu Z, Cui Y, Deng D, Bai S, Yang L, Shi Y, Liu Z, Zhang R. Protective Effects of Resveratrol on Adolescent Social Isolation-Induced Anxiety-Like Behaviors via Modulating Nucleus Accumbens Spine Plasticity and Mitochondrial Function in Female Rats. Nutrients 2022; 14:4542. [PMID: 36364807 PMCID: PMC9656193 DOI: 10.3390/nu14214542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2023] Open
Abstract
Social isolation (SI) is a major risk factor for mood disorders in adolescents. The nucleus accumbens (NAc) is an important reward center implicated in psychiatric disorders. Resveratrol (RSV) is one of the most effective natural polyphenols with anti-anxiety and depression effects. However, little is known about the therapeutic effects and mechanisms of RSV on behavioral abnormality of adolescent social stress. Therefore, this study aimed to investigate the underlying mechanism of RSV on the amelioration of SI-induced behavioral abnormality. We found that SI induced anxiety-like behavior and social dysfunction in isolated female rats. Moreover, SI reduced mitochondrial number and ATP levels and increased thin spine density in the NAc. RNA sequencing results showed that SI changed the transcription pattern in the NAc, including 519 upregulated genes and 610 downregulated genes, especially those related to mitochondrial function. Importantly, RSV ameliorated behavioral and spine abnormalities induced by SI and increased NAc ATP levels and mitochondria number. Furthermore, RSV increased the activity of cytochrome C oxidase (COX) and upregulated mRNA levels of Cox5a, Cox6a1 and Cox7c. These results demonstrate that the modulation of spine plasticity and mitochondrial function in the NAc by RSV has a therapeutic effect on mood disorders induced by social isolation.
Collapse
Affiliation(s)
- Jinlan Zhao
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lihong Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zuyi Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yongfei Cui
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Deng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shasha Bai
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lei Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
9
|
Wu J, Teng Q, Mao Y, Duan Y, Pan X, Xu S, Cai Y, Pan Y, Zhou M, Zhang Y. Cytochrome bc1 Complex: Potential Breach to Improve the Activity of Phenazines on Xanthomonas. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10158-10169. [PMID: 35948060 DOI: 10.1021/acs.jafc.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The effects of the natural pesticides, phenazines, were reported to be limited by some tolerant metabolism processes within Xanthomonas. Our previous studies suggested that the functional cytochrome bc1 complex, the indispensable component of the respiration chain, might participate in tolerating phenazines in Xanthomonas. In this study, the cytochrome bc1 mutants of Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas oryzae pv. oryzae (Xoo), which exhibit different tolerance abilities to phenazines, were constructed, and the cytochrome bc1 complex was proven to partake a critical and conserved role in tolerating phenazines in Xanthomonas. In addition, results of the cytochrome c mutants suggested the different functions of the various cytochrome c proteins in Xanthomonas and that the electron channeled by the cytochrome bc1 complex to cytochrome C4 is the key to reveal the tolerance mechanism. In conclusion, the study of the cytochrome bc1 complex provides a potential strategy to improve the activity of phenazines against Xanthomonas.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingzhu Teng
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yushuai Mao
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yabing Duan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayan Pan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Xu
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqiang Cai
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuemin Pan
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mingguo Zhou
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Zhang
- Institute of Plant Protection and Agro Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
- College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
10
|
Eghtesadi N, Olaifa K, Perna FM, Capriati V, Trotta M, Ajunwa O, Marsili E. Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry 2022; 147:108207. [PMID: 35839687 DOI: 10.1016/j.bioelechem.2022.108207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Bacillus subtilis is a Gram-positive, spore-forming bacterium with a versatile and adaptable metabolism, which makes it a viable cell factory for microbial production. Electroactivity has recently been identified as a cellular characteristic linked with the metabolic activity of B. subtilis. The enhancement of B. subtilis electroactivity can positively enhance bioproduction of high-added value metabolites under electrofermentative conditions. Here, we explored the use of deep eutectic solvents (DESs) and DES components as biocompatible nutrient additives for enhancing electroactivity of B. subtilis. The strongest electroactivity was obtained in an aqueous choline chloride: glycerol (1:2 mol mol-1) eutectic mixture. At low concentration (50-500 mM), this mixture induced a pseudo-diauxic increase in planktonic growth and increased biofilm formation, likely due to a nutritional and osmoprotectant effect. Similarities in electroactivity enhancements of choline chloride-based eutectic mixtures and quinone redox metabolism in B. subtilis were detected using high performance liquid chromatography and differential pulse voltammetry. Results show that choline chloride-based aqueous eutectic mixtures can enhance biomass and productivity in biofilm-based electrofermentation. However, the specific mechanism needs to be fully elucidated.
Collapse
Affiliation(s)
- Neda Eghtesadi
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Kayode Olaifa
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Filippo Maria Perna
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro," via E. Orabona 4, I-70125 Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro," via E. Orabona 4, I-70125 Bari, Italy
| | - Massimo Trotta
- Istituto per i Processi Chimico Fisici, CNR, via E. Orabona 4, I-70125 Bari, Italy
| | - Obinna Ajunwa
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan; Department of Microbiology, Modibbo Adama University, Yola, Nigeria.
| | - Enrico Marsili
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan.
| |
Collapse
|
11
|
Arazi H, Aboutalebi S, Taati B, Cholewa JM, Candow DG. Effects of short-term betaine supplementation on muscle endurance and indices of endocrine function following acute high-intensity resistance exercise in young athletes. J Int Soc Sports Nutr 2022; 19:1-16. [PMID: 35599921 PMCID: PMC9116406 DOI: 10.1080/15502783.2022.2041988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective This study examined the effects of short-term betaine supplementation on muscle endurance, plasma lactate, testosterone and cortisol levels, and the testosterone to cortisol (T/C) ratio in response to acute resistance exercise (RE). Method Using a double-blind, crossover study design, 10 handball players (age ± SD = 16 ± 1 yrs) without prior-structured RE experience performed a high-intensity RE session (leg press followed by bench press; 5 sets to volitional fatigue using 80% baseline 1 repetition maximum (1RM)), before and after 14 days of either placebo (maltodextrin) or betaine (2.5 g·d−1) supplementation. A 30-day washout period separated each treatment. 48 h prior to testing sessions, participants recorded their food intake and did not perform strenuous exercise. Venous blood was sampled before supplementation, and before and after each RE session. Results After betaine supplementation, participants performed more repetitions (p < 0.001) during the leg press (Betaine: 35.8 ± 4.3; Placebo: 24.8 ± 3.6, Cohen’s d = 2.77) and bench press (Betaine: 36.3 ± 2.6; Placebo: 26.1 ± 3.5, Cohen’s d = 3.34). Betaine resulted in lower post-exercise cortisol (Betaine: 7.6 ± 1.7; Placebo: 13 ± 3.4 µg.dL−1, p = 0.003, generalized eta squared (ηG2) = 0.49) and lactate (Betaine: 5.2 ± 0.3; Placebo: 6 ± 0.3 mmol.L−1, p < 0.001, ηG2 = 0.96) and higher total testosterone (Betaine: 15.2 ± 2.2; Placebo: 8.7 ± 1.7 ng.mL−1, p < 0.001, ηG2 = 0.87) and T/C ratio (Betaine: 0.21 ± 0.05; Placebo: 0.07 ± 0.02, p < 0.001, = 0.82). Conclusions Two weeks of betaine supplementation improved upper- and lower-body muscle endurance and influenced indices of endocrine function following an acute session of high-intensity RE in adolescent handball players.
Collapse
Affiliation(s)
- Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Shima Aboutalebi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Behzad Taati
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht Iran
| | - Jason M. Cholewa
- Department of Exercise Physiology, College of Health Sciences, University of Lynchburg, Lynchburg, VA USA
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK, Canada
| |
Collapse
|
12
|
Chun JH, Henckel MM, Knaub LA, Hull SE, Pott GB, Walker LA, Reusch JEB, Keller AC. (-)-Epicatechin Improves Vasoreactivity and Mitochondrial Respiration in Thermoneutral-Housed Wistar Rat Vasculature. Nutrients 2022; 14:nu14051097. [PMID: 35268072 PMCID: PMC8912787 DOI: 10.3390/nu14051097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease (CVD) is a global health concern. Vascular dysfunction is an aspect of CVD, and novel treatments targeting vascular physiology are necessary. In the endothelium, eNOS regulates vasodilation and mitochondrial function; both are disrupted in CVD. (−)-Epicatechin, a botanical compound known for its vasodilatory, eNOS, and mitochondrial-stimulating properties, is a potential therapy in those with CVD. We hypothesized that (−)-epicatechin would support eNOS activity and mitochondrial respiration, leading to improved vasoreactivity in a thermoneutral-derived rat model of vascular dysfunction. We housed Wistar rats at room temperature or in thermoneutral conditions for a total of 16 week and treated them with 1mg/kg body weight (−)-epicatechin for 15 day. Vasoreactivity, eNOS activity, and mitochondrial respiration were measured, in addition to the protein expression of upstream cellular signaling molecules including AMPK and CaMKII. We observed a significant improvement of vasodilation in those housed in thermoneutrality and treated with (−)-epicatechin (p < 0.05), as well as dampened mitochondrial respiration (p < 0.05). AMPK and CaMKIIα and β expression were lessened with (−)-epicatechin treatment in those housed at thermoneutrality (p < 0.05). The opposite was observed with animals housed at room temperature supplemented with (−)-epicatechin. These data illustrate a context-dependent vascular response to (−)-epicatechin, a candidate for CVD therapeutic development.
Collapse
Affiliation(s)
- Ji Hye Chun
- Microtek, Inc., San Diego, CA 92127, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
| | - Melissa M. Henckel
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Leslie A. Knaub
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sara E. Hull
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greg B. Pott
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lori A. Walker
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jane E.-B. Reusch
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amy C. Keller
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA; (M.M.H.); (L.A.K.); (S.E.H.); (G.B.P.); (J.E.-B.R.)
- Division of Endocrinology, Metabolism & Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3921
| |
Collapse
|