1
|
Turkoglu B, Mansuroglu B. Investigating the Effects of Chelidonic Acid on Oxidative Stress-Induced Premature Cellular Senescence in Human Skin Fibroblast Cells. Life (Basel) 2024; 14:1070. [PMID: 39337855 PMCID: PMC11433492 DOI: 10.3390/life14091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of chelidonic acid (CA) on hydrogen peroxide (H2O2) induced cellular senescence in human skin fibroblast cells (BJ). Cellular senescence is a critical mechanism that is linked to age-related diseases and chronic conditions. CA, a γ-pyrone compound known for its broad pharmacological activity, was assessed for its potential to mitigate oxidative stress and alter senescence markers. A stress-induced premature senescence (SIPS) model was designed in BJ fibroblast cells using the oxidative stress agent H2O2. After this treatment, cells were treated with CA, and the potential effect of CA on senescence was evaluated using senescence-related β-galactosidase, 4',6-diamino-2-phenylindole (DAPI), acridine-orange staining (AO), comet assay, molecular docking assays, gene expression, and protein analysis. These results demonstrate that CA effectively reduces senescence markers, including senescence-associated β-galactosidase activity, DNA damage, lysosomal activity, and oxidative stress indicators such as malondialdehyde. Molecular docking revealed CA's potential interactions with critical proteins involved in senescence signalling pathways, suggesting mechanisms by which CA may exert its effects. Gene expression and protein analyses corroborated the observed anti-senescent effects, with CA modulating p16, p21, and pRB1 expressions and reducing oxidative stress markers. In conclusion, CA appeared to have senolytic and senomorphic potential in vitro, which could mitigate and reverse SIPS markers in BJ fibroblasts.
Collapse
Affiliation(s)
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
2
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Serra D, Cruciani S, Garroni G, Sarais G, Kavak FF, Satta R, Montesu MA, Floris M, Ventura C, Maioli M. Effect of Helichrysum italicum in Promoting Collagen Deposition and Skin Regeneration in a New Dynamic Model of Skin Wound Healing. Int J Mol Sci 2024; 25:4736. [PMID: 38731954 PMCID: PMC11083432 DOI: 10.3390/ijms25094736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products have many healing effects on the skin with minimal or no adverse effects. In this study, we analyzed the regenerative properties of a waste product (hydrolate) derived from Helichrysum italicum (HH) on scratch-tested skin cell populations seeded on a fluidic culture system. Helichrysum italicum has always been recognized in the traditional medicine of Mediterranean countries for its wide pharmacological activities. We recreated skin physiology with a bioreactor that mimics skin stem cell (SSCs) and fibroblast (HFF1) communication as in vivo skin layers. Dynamic culture models represent an essential instrument for recreating and preserving the complex multicellular organization and interactions of the cellular microenvironment. Both cell types were exposed to two different concentrations of HH after the scratch assay and were compared to untreated control cells. Collagen is the constituent of many wound care products that act directly on the damaged wound environment. We analyzed the role played by HH in stimulating collagen production during tissue repair, both in static and dynamic culture conditions, by a confocal microscopic analysis. In addition, we performed a gene expression analysis that revealed the activation of a molecular program of stemness in treated skin stem cells. Altogether, our results indicate a future translational application of this natural extract to support skin regeneration and define a new protocol to recreate a dynamic process of healing.
Collapse
Affiliation(s)
- Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
- R&D Laboratory Center, InoCure s.r.o, Politickych veziu 935/13, Nové Mesto, Praha 1, 110 00 Prague, Czech Republic
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, 09042 Cagliari, Italy;
| | - Fikriye Fulya Kavak
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonietta Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering—Eldor Lab, Istituto Nazionale di Biostrutture e Biosistemi (INBB), 40128 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (S.C.); (G.G.); (F.F.K.); (M.F.)
- Center for Developmental Biology and Reprogramming—CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
4
|
Serra D, Garroni G, Cruciani S, Coradduzza D, Pashchenko A, Amler E, Pintore G, Satta R, Montesu MA, Kohl Y, Ventura C, Maioli M. Electrospun Nanofibers Encapsulated with Natural Products: A Novel Strategy to Counteract Skin Aging. Int J Mol Sci 2024; 25:1908. [PMID: 38339184 PMCID: PMC10856659 DOI: 10.3390/ijms25031908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.
Collapse
Affiliation(s)
- Diletta Serra
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- R&D Laboratory Center, InoCure s.r.o., Politických Veziu 935/13, 110 00 Prague, Czech Republic
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
| | - Aleksei Pashchenko
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- Department of Biophysics, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic;
| | - Evzen Amler
- University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic;
| | - Giorgio Pintore
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Rosanna Satta
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Maria Antonietta Montesu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy; (R.S.); (M.A.M.)
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany;
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems-Eldor Lab, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy;
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (D.S.); (G.G.); (S.C.); (D.C.); (A.P.)
- Center for Developmental Biology and Reprogramming-CEDEBIOR, Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
5
|
Li Q, Wang Z, Shi N, Qi Y, Yao W, Yu J, Lu Y. Application and prospect of the therapeutic strategy of inhibiting cellular senescence combined with pro-regenerative biomaterials in regenerative medicine. SMART MEDICINE 2023; 2:e20230030. [PMID: 39188301 PMCID: PMC11235619 DOI: 10.1002/smmd.20230030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 08/28/2024]
Abstract
Complete regeneration of damaged tissues/organs has always been the ultimate challenge in regenerative medicine. Aging has long been considered the basis of age-related diseases, as senescent cells gradually accumulate in tissues with increasing age, tissues exhibit aging and normal physiological functions are inhibited. In recent years, in damaged tissues, scholars have found that the number of cells with features of cellular senescence continues to increase over time. The accumulation of senescent cells severely hinders the healing of damaged tissues. Furthermore, by clearing senescent cells or inhibiting the aging microenvironment, damaged tissues regained their original regenerative and repair capabilities. On the other hand, various biomaterials have been proved to have good biocompatibility and can effectively support cell regeneration after injury. Combining the two solutions, inhibiting the cellular senescence in damaged tissues and establishing a pro-regenerative environment through biomaterial technology gradually reveals a new, unexpected treatment strategy applied to the field of regenerative medicine. In this review, we first elucidate the main characteristics of senescent cells from morphological, functional and molecular levels, and discuss in detail the process of accumulation of senescent cells in tissues. Then, we will explore in depth how the accumulation of senescent cells after damage affects tissue repair and regeneration at different stages. Finally, we will turn to how to promote tissue regeneration and repair in the field of regenerative medicine by inhibiting cellular senescence combined with biomaterial technology. Our goal is to understand the relationship between cellular senescence and tissue regeneration through this new perspective, and provide valuable references for the development of new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Qianyi Li
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Pôle Sino‐Français de Recherches en Sciences du Vivant et G´enomiqueShanghaiChina
- International Laboratory in Cancer, Aging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur UniversityShanghaiChina
| | | | | | - Yang Qi
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenfei Yao
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Yu
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiming Lu
- Department of EmergencyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Pôle Sino‐Français de Recherches en Sciences du Vivant et G´enomiqueShanghaiChina
- International Laboratory in Cancer, Aging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Côte d'Azur UniversityShanghaiChina
- Division of Critical CareNanxiang Hospital of Jiading DistrictShanghaiChina
| |
Collapse
|
6
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
7
|
Myrtle-Functionalized Nanofibers Modulate Vaginal Cell Population Behavior While Counteracting Microbial Proliferation. PLANTS 2022; 11:plants11121577. [PMID: 35736728 PMCID: PMC9227804 DOI: 10.3390/plants11121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Vaginal infections affect millions of women annually worldwide. Therapeutic options are limited, moreover drug-resistance increases the need to find novel antimicrobials for health promotion. Recently phytochemicals were re-discovered for medical treatment. Myrtle (Myrtus communis L.) plant extracts showed in vitro antioxidant, antiseptic and anti-inflammatory properties thanks to their bioactive compounds. The aim of the present study was to create novel nanodevices to deliver three natural extracts from leaves, seeds and fruit of myrtle, in vaginal milieu. We explored their effect on human cells (HeLa, Human Foreskin Fibroblast-1 line, and stem cells isolated from skin), resident microflora (Lactobacillus acidophilus) and on several vaginal pathogens (Trichomonas vaginalis, Escherichia coli, Staphylococcus aureus, Candida albicans, Candida kefyr, Candida glabrata, Candida parapsilosis, Candida krusei). Polycaprolactone-Gelatin nanofibers encapsulated with leaves extract and soaked with seed extracts exhibited a different capability in regard to counteracting microbial proliferation. Moreover, these nanodevices do not affect human cells and resident microflora viability. Results reveal that some of the tested nanofibers are interesting candidates for future vaginal infection treatments.
Collapse
|