1
|
Korzec M, Kotowicz S, Malarz K, Mrozek-Wilczkiewicz A. Spectroscopic and Biological Properties of the 3-Imino-1,8-naphthalimide Derivatives as Fluorophores for Cellular Imaging. Molecules 2023; 28:6255. [PMID: 37687082 PMCID: PMC10488415 DOI: 10.3390/molecules28176255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
This paper presents the photophysical and biological properties of eight 3-imino-1,8-naphthalimides. The optical properties of the compounds were investigated in the solvents that differed in their polarity (dichloromethane, acetonitrile, and methanol), including three methods of sample preparation using different pre-dissolving solvents such as dimethyl sulfoxide or chloroform. In the course of the research, it was found that there are strong interactions between the tested compounds and DMSO, which was visible as a change in the maximum emission band (λem) of the neat 3-imino-1,8-naphthalimides (λem = 470-480 nm) and between the compounds and DMSO (λem = 504-514 nm). The shift of the emission maximum that was associated with the presence of a small amount of DMSO in the sample was as much as 41 nm. In addition, the susceptibility of imines to hydrolysis in the methanol/water mixture with increasing water content and in the methanol/water mixture (v/v; 1:1) in the pH range from 1 to 12 was discussed. The studies showed that the compounds are hydrolysed in the CH3OH/H2O system in an acidic environment (pH in the range of 1 to 4). In addition, it was found that partial hydrolysis occurs in systems with an increased amount of water, and its degree may depend on the type of substituent on the imine bond. The compounds tended to quench the emission (ACQ) in the aggregated state and increase the emission related to the protonation of the imine bond. Moreover, it was found that the substituent in the imine bonds influenced a compound's individual photophysical properties. Biological tests, including cytotoxicity studies and cellular localisation, were also performed for all of the molecules. All of the tested compounds exhibited green fluorescence in the MCF-7 cells and showed co-localisation in the mitochondria, endoplasmic reticulum, and lysosome. The obtained photophysical and biological results indicate the promising potential use of the tested compounds as cellular dyes.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Sonia Kotowicz
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland;
| | - Katarzyna Malarz
- August Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.M.-W.)
| | - Anna Mrozek-Wilczkiewicz
- August Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty Str., 41-500 Chorzow, Poland; (K.M.); (A.M.-W.)
| |
Collapse
|
2
|
Tang C, Wang X, Jin Y, Wang F. Recent advances in HDAC-targeted imaging probes for cancer detection. Biochim Biophys Acta Rev Cancer 2022; 1877:188788. [PMID: 36049581 DOI: 10.1016/j.bbcan.2022.188788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Histone Deacetylases (HDACs) are abnormally high expressed in various cancers and play a crucial role in regulating gene expression. While HDAC-targeted inhibitors have been rapidly developed and approved in the last twenty years, noninvasive monitoring and visualizing the expression levels of HDACs in tumor tissues might help to early diagnosis in cancer and predict the response to HDAC-targeted cancer therapy. In this review, we summarize the recent advancements in the development of HDAC-targeted probes and their applications in cancer imaging and image-guided surgery. We also discuss the design strategies, advantages and disadvantages of these probes. We hope that this review will provide guidance for the design of HDAC-targeted imaging probes and clinical applications in future.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Yushen Jin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xianyang 712046, Shaanxi, China; Institute of Medical Engineering, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
3
|
Daśko M, de Pascual-Teresa B, Ortín I, Ramos A. HDAC Inhibitors: Innovative Strategies for Their Design and Applications. Molecules 2022; 27:molecules27030715. [PMID: 35163980 PMCID: PMC8837987 DOI: 10.3390/molecules27030715] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are a large family of epigenetic metalloenzymes that are involved in gene transcription and regulation, cell proliferation, differentiation, migration, and death, as well as angiogenesis. Particularly, disorders of the HDACs expression are linked to the development of many types of cancer and neurodegenerative diseases, making them interesting molecular targets for the design of new efficient drugs and imaging agents that facilitate an early diagnosis of these diseases. Thus, their selective inhibition or degradation are the basis for new therapies. This is supported by the fact that many HDAC inhibitors (HDACis) are currently under clinical research for cancer therapy, and the Food and Drug Administration (FDA) has already approved some of them. In this review, we will focus on the recent advances and latest discoveries of innovative strategies in the development and applications of compounds that demonstrate inhibitory or degradation activity against HDACs, such as PROteolysis-TArgeting Chimeras (PROTACs), tumor-targeted HDACis (e.g., folate conjugates and nanoparticles), and imaging probes (positron emission tomography (PET) and fluorescent ligands).
Collapse
Affiliation(s)
- Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland;
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Beatriz de Pascual-Teresa
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
| | - Irene Ortín
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| | - Ana Ramos
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28925 Alcorcón, Spain;
- Correspondence: (I.O.); (A.R.)
| |
Collapse
|
4
|
Filiti J, Hearn K, Rudebeck E, Ngo HT, Pham-Tran NN, Pfeffer F. Comparing the anion binding of 4-amido- with 4-amino-1,8-naphthalimides. Org Biomol Chem 2021; 19:9260-9265. [PMID: 34657949 DOI: 10.1039/d1ob01664d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and evaluation of a new anion receptor based on the 4-amido-1,8-naphthalimide scaffold is described. The findings indicate that the amide N-H is an enhanced H-bond donor but is otherwise restricted in its ability to participate in the binding of simple anions.
Collapse
Affiliation(s)
- Jacob Filiti
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, 3216, Australia.
| | - Kyle Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, 3216, Australia.
| | - Elley Rudebeck
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, 3216, Australia.
| | - Huynh Thien Ngo
- Center for Functional Sensors & Actuators (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Nguyen-Nguyen Pham-Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Ho Chi Minh City, 721337, Vietnam
| | - Frederick Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Geelong, 3216, Australia.
| |
Collapse
|